The effect of acute hypoxia on excitability in the heart and the L-type calcium channel as a therapeutic target.

Curr Drug Discov Technol

School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.

Published: December 2008

Acute hypoxia is induced during coronary occlusion or when oxygen supply does not meet demand and can trigger cardiac arrhythmia. Cardiac ion channels shape the action potential and excitability of the heart. Acute hypoxia regulates the function of cardiac ion channels including the L-type Ca(2+) channel that is the main route for Ca(2+)influx into cardiac myocytes and shapes the plateau phase of the action potential. This article will review the evidence for alteration of ion channel function during hypoxia as a result of modification of thiol groups by reactive oxygen species. The effect of acute hypoxia on cardiac excitability will be examined and how this can lead to life threatening arrhythmias with particular reference to the L-type Ca(2+) channel. Recent evidence indicates the L-type Ca(2+) channel is a suitable target for the development of drugs that can modify channel function during hypoxia or oxidative stress to prevent induction of arrhythmia or development of pathology.

Download full-text PDF

Source
http://dx.doi.org/10.2174/157016308786733546DOI Listing

Publication Analysis

Top Keywords

acute hypoxia
16
l-type ca2+
12
ca2+ channel
12
excitability heart
8
cardiac ion
8
ion channels
8
action potential
8
channel function
8
function hypoxia
8
channel
6

Similar Publications

Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution.

View Article and Find Full Text PDF

Therapeutic hypothermia in preterm infants under 36 weeks: Case series on outcomes and brain MRI findings.

Eur J Pediatr

January 2025

Neonatology Department. Hospital Sant Joan de Déu, Center for Maternal Fetal and Neonatal Medicine. Neonatal Brain Group, Universitat de Barcelona. Hospital Clínic, Universitat de Barcelona. BCNatal - Barcelona, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.

Purpose: Perinatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of neonatal brain injury. Therapeutic hypothermia (TH) is the standard treatment for term neonates, but its safety and efficacy in neonates < 36 weeks gestational age (GA) remains unclear. This case series aimed to evaluate the outcomes of preterm infants with HIE treated with TH.

View Article and Find Full Text PDF

Acute liver failure (ALF) is a fulminant clinical syndrome that usually leads to multiple organ failure and high mortality. Macrophages play a crucial role in the initiation, development, and recovery of ALF. Targeting macrophages through immunotherapy holds significant promise as a therapeutic strategy.

View Article and Find Full Text PDF

Purpose: Hypoxemia is a risk factor for mortality and long-term neuropsychological impairment during severe acute respiratory distress syndrome (ARDS). Veno-venous extracorporeal membrane oxygenation (VV-ECMO) is a potential treatment for such cases but may not suffice. We aimed to evaluate the effects of pharmacological interventions for cardiac output (CO) control using ivabradine or beta-blockers for refractory hypoxemia during VV-ECMO.

View Article and Find Full Text PDF

Plant Cysteine Oxidases (PCOs) are oxygen-sensing enyzmes that catalyse oxidation of cysteinyl residues at the N-termini of target proteins, triggering their degradation via the N-degron pathway. PCO oxygen sensitivity means that in low oxygen conditions (hypoxia), their activity reduces and target proteins are stabilised. PCO substrates include Group VII Ethylene Response Factors (ERFVIIs) involved in adaptive responses to the acute hypoxia experienced upon plant submergence, as well as Little Zipper 2 (ZPR2) and Vernalisation 2 (VRN2) which are involved in developmental processes in hypoxic niches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!