The covalent association of inter-alpha-inhibitor-derived heavy chains (HCs) with hyaluronan was first described in synovial fluid from arthritic patients and later described as a structural and functional component of hyaluronan "cable" structures produced by many different cells and stimuli. HC transfer has been shown to be mediated by the protein product of TSG-6 (tumor necrosis factor-stimulated gene 6). Considering the accumulation of hyaluronan in airways following asthmatic attacks and the subsequent infiltration of leukocytes, we sought to characterize HC substitution of hyaluronan "cables" in primary mouse airway smooth muscle cells (MASM) and primary human airway smooth muscle cells (HASM). We found that cells derived from mice lacking TSG-6 had no defect in hyaluronan production or hyaluronan-mediated leukocyte adhesion when treated with the viral mimic poly(I,C). Functional hyaluronan cables were induced by cycloheximide in the confirmed absence of protein synthesis, with or without simultaneous treatment with poly(I,C). We characterized the species specificity of the antibody other investigators used to describe the HC-hyaluronan complex of hyaluronan cables and found minimal affinity to bovine-derived HCs in contrast to HCs from mouse and human sera. Thus, we cultured MASM and HASM cells in serum from these three sources and analyzed hyaluronan extracts for HCs and other hyaluronan-binding proteins, using parallel cumulus cell-oocyte complex (COC) extracts as positive controls. We conclude that, if hyaluronan cables derived from MASM and HASM cells are substituted with HCs, the amount of substitution is significantly below the limit of detection when compared with COC extracts of similar hyaluronan mass.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643503PMC
http://dx.doi.org/10.1074/jbc.M807979200DOI Listing

Publication Analysis

Top Keywords

airway smooth
12
smooth muscle
12
muscle cells
12
hasm cells
12
hyaluronan cables
12
hyaluronan
11
masm hasm
8
coc extracts
8
cells
7
hcs
5

Similar Publications

The mechanisms linking maternal asthma (MA) exposure in utero and subsequent risk of asthma in childhood are not fully understood. Pathological airway remodelling, including reticular basement membrane thickening, has been reported in infants and children who go on to develop asthma later in childhood. This suggests altered airway development before birth as a mechanism underlying increased risk of asthma in children exposed in utero to MA.

View Article and Find Full Text PDF

Rationale: Airflow obstruction refractory to β2 adrenergic receptor (β2AR) agonists is an important clinical feature of infant respiratory syncytial virus (RSV) bronchiolitis, with limited treatment options. This resistance is often linked to poor drug delivery and potential viral infection of airway smooth muscle cells (ASMCs). Whether RSV inflammation causes β2AR desensitization in infant ASMCs is unknown.

View Article and Find Full Text PDF

Asthma is a chronic respiratory disease characterized by airway inflammation. Lignosus rhinocerotis (LR), a medicinal mushroom rich in polysaccharide, has been traditionally used to treat various diseases, including asthma. This study aimed to fractionate, characterize and evaluate the anti-asthmatic effects of polysaccharides from LR (LRP).

View Article and Find Full Text PDF

Airway inflammation, a hallmark feature of asthma, drives many canonical features of the disease, including airflow limitation, mucus plugging, airway remodeling, and hyperresponsiveness. The T2 inflammatory paradigm is firmly established as the dominant mechanism of asthma pathogenesis, largely due to the success of inhaled corticosteroids and biologic therapies targeting components of the T2 pathway, including IL-4, IL-5, IL-13, and thymic stromal lymphopoietin (TSLP). However, up to 30% of patients may lack signatures of meaningful T2 inflammation (ie, T2 low).

View Article and Find Full Text PDF

Introduction: T helper 17 (Th17) cells have a significant effect in the pathogenesis of asthma, and signal transducer and activator of transcription 3 (STAT3) pathway activation is critical for Th17 cell differentiation. Timosaponin A-III (TA3) was reported to inhibit the STAT3 pathway. Here, we investigated whether TA3 improved asthma by inhibiting the STAT3 pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!