The TolQRA proteins of Escherichia coli form an inner membrane complex involved in the maintenance of the outer membrane stability and in the late stages of cell division. The TolQR complex uses the proton motive force to regulate TolA conformation and its interaction with the outer membrane Pal lipoprotein. It has been proposed that an ion channel forms at the TolQR transmembrane helix (TMH) interface. This complex assembles with a minimal TolQ:TolR ratio of 4-6:2 and therefore involves 14-20 TMHs. To define the organization of the transmembrane helices in the membrane within the TolQR complex, we initiated a cysteine scanning study. In this study, we report results for the systematic replacement of each residue of the TolR TMH. Phenotypic analyses first showed that most of the mutants are functional. Three mutants, TolR L22C, D23C, and V24C, were shown to affect TolQR functioning. Disulfide bond complex formation further showed that two TolR anchors are close enough to interact. Two substitutions, L22C and V24C, form high level of dimers, suggesting that the TolR helix rotates as molecular gears between these two positions and that disulfide bond formation between these residues blocked the rotary motion. Mutations of critical residues located within the TolQ TMH2 and TMH3 and the TolR TMH and proposed to form the ion pathway prevent rotation between these two residues. TolR anchors may form molecular gears that oscillate in response to proton motive force to regulate channel activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M805257200 | DOI Listing |
iScience
February 2025
Department of Clinical Laboratory, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China.
Multidrug-resistant Typhimurium has emerged as a global public health concern. Asymptomatic gastrointestinal carriage is a key factor in the spread of antibiotic-resistant bacteria. However, it is challenging to obtain direct evidence of transfer of mobile genetic elements (MGEs).
View Article and Find Full Text PDFFront Nutr
January 2025
College of Animal Science, Anhui Science and Technology University, Chuzhou, China.
Introduction: Enterotoxic (ETEC) is the main pathogen that causes diarrhea, especially in young children. This disease can lead to substantial morbidity and mortality and is a major global health concern. Managing ETEC infections is challenging owing to the increasing prevalence of antibiotic resistance.
View Article and Find Full Text PDFFront Immunol
January 2025
Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.
Background: Shell and pearl formation in bivalves is a sophisticated biomineralization process that encompasses immunological and mineralization aspects, particularly during shell repair and the initial stages of pearl cultivation when a nucleus is inserted. Here, we describe a novel C-type lectin, HcLec1, isolated and characterized from the freshwater pearl mussel Lea.
Methods: Immune challenge, RNA interference (RNAi) experiments, ELISA, and antibacterial assays were employed to investigate the role of HcLec1 in innate immunity.
Environ Health Insights
January 2025
Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana.
Introduction: Access to safe drinking water is crucial for health and survival, yet many developing countries face significant challenges in this regard. In West Africa, rapid urbanisation has outpaced efforts to improve access to potable water, compelling households to rely on private vendors for solutions, particularly through the growing market for sachet water. Widely consumed in Ghana, sachet water has become a convenient and affordable option, with over 37% of the population depending on it.
View Article and Find Full Text PDFJAC Antimicrob Resist
February 2025
Zoetis Reference Laboratory, Shanghai, China.
Objectives: In this study, bacteria isolated from companion animals in China were taxonomically identified and assessed for antimicrobial susceptibility to evaluate the prevalence of antimicrobial resistance (AMR) in pets.
Methods: From October 2022 to October 2023, 5468 samples were collected from pets, predominantly from cats and dogs, in China, of which 5253 bacterial strains were identified (>98%). Antimicrobial susceptibility was assessed using the VITEK 2 COMPACT system and the Kirby-Bauer disc diffusion method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!