Although HMGA1 (high-mobility group A1; formerly HMG-I/Y) is an oncogene that is widely overexpressed in aggressive cancers, the molecular mechanisms underlying transformation by HMGA1 are only beginning to emerge. HMGA1 encodes the HMGA1a and HMGA1b protein isoforms, which function in regulating gene expression. To determine how HMGA1 leads to neoplastic transformation, we looked for genes regulated by HMGA1 using gene expression profile analysis. Here, we show that the STAT3 gene, which encodes the signaling molecule signal transducer and activator of transcription 3 (STAT3), is a critical downstream target of HMGA1a. STAT3 mRNA and protein are up-regulated in fibroblasts overexpressing HMGA1a and activated STAT3 recapitulates the transforming activity of HMGA1a in fibroblasts. HMGA1a also binds directly to a conserved region of the STAT3 promoter in vivo in human leukemia cells by chromatin immunoprecipitation and activates transcription of the STAT3 promoter in transfection experiments. To determine if this pathway contributes to HMGA1-mediated transformation, we investigated STAT3 expression in our HMGA1a transgenic mice, all of which developed aggressive lymphoid malignancy. STAT3 expression was increased in the leukemia cells from our transgenics but not in control cells. Blocking STAT3 function induced apoptosis in the transgenic leukemia cells but not in controls. In primary human leukemia samples, there was a positive correlation between HMGA1a and STAT3 mRNA. Moreover, blocking STAT3 function in human leukemia or lymphoma cells led to decreased cellular motility and foci formation. Our results show that the HMGA1a-STAT3 axis is a potential Achilles heel that could be exploited therapeutically in hematopoietic and other malignancies overexpressing HMGA1a.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913892 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-08-2121 | DOI Listing |
Leukemia
January 2025
Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44114, USA.
Exp Hematol Oncol
January 2025
Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China.
Background: Sequential CD19 and CD22 chimeric antigen receptor (CAR)-T cell therapy offers a promising approach to antigen-loss relapse in relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL); however, research in adults remains limited.
Methods: This study aimed to evaluate the efficacy and safety of sequential CD19 and CD22 CAR-T cell therapy in adult patients with R/R B-ALL between November 2020 and November 2023 (ChiCTR2100053871). Key endpoints included the adverse event incidence, overall survival (OS), and leukemia-free survival (LFS).
Int J Biol Macromol
January 2025
Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
Acute myeloid leukemia (AML) is a severe blood cancer with an urgent need for novel therapies for refractory or relapsed patients. Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1), an immune suppressive receptor expressed on immune cells and AML blasts but minimally on hematopoietic stem cells (HSCs), represents a potential therapeutic target. But there has been limited research on therapies targeting LAIR1 for AML and no published reports on LAIR1 antibody-drug conjugate (ADC).
View Article and Find Full Text PDFMol Cell
January 2025
Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA. Electronic address:
In this issue of Molecular Cell, Gambi, Boccalatte, Hernaez, et al. apply multiomics followed by genetic engineering to define then characterize epigenetic hubs that regulate processes crucial for T-ALL and use this insight to offer new avenues for therapeutic targeting.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.
is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!