Human esophageal epithelial cells play a key role in esophageal inflammation in response to acidic pH during gastroesophageal reflux disease (GERD), increasing secretion of IL-6 and IL-8. The mechanisms underlying IL-6 and IL-8 expression and secretion in esophageal epithelial cells after acid stimulation are not well characterized. We investigated the role of PKC, MAPK, and NF-kappaB signaling pathways and transcriptional regulation of IL-6 and IL-8 expression in HET-1A cells exposed to acid. Exposure of HET-1A cells to pH 4.5 induced NF-kappaB activity and enhanced IL-6 and IL-8 secretion and mRNA and protein expression. Acid stimulation of HET-1A cells also resulted in activation of MAPKs and PKC (alpha and epsilon). Curcumin, as well as inhibitors of NF-kappaB (SN-50), PKC (chelerythrine), and p44/42 MAPK (PD-098059) abolished the acid-induced expression of IL-6 and IL-8. The JNK inhibitor SP-600125 blocked expression/secretion of IL-6 but only partially attenuated IL-8 expression. The p38 MAPK inhibitor SB-203580 did not inhibit IL-6 expression but exerted a stronger inhibitory effect on IL-8 expression. Together, these data demonstrate that 1) acid is a potent inducer of IL-6 and IL-8 production in HET-1A cells; 2) MAPK and PKC signaling play a key regulatory role in acid-mediated IL-6 and IL-8 expression via NF-kappaB activation; and 3) the anti-inflammatory plant compound curcumin inhibits esophageal activation in response to acid. Thus IL-6 and IL-8 expression by acid may contribute to the pathobiology of mucosal injury in GERD, and inhibition of the NF-kappaB/proinflammatory cytokine pathways may emerge as important therapeutic targets for treatment of esophageal inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.90428.2008 | DOI Listing |
Cell Biosci
January 2025
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China.
Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.
View Article and Find Full Text PDFViruses
January 2025
Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz (IOC), FIOCRUZ, Rio de Janeiro 21040-360, Brazil.
Background: Severe COVID-19 presents a variety of clinical manifestations associated with inflammatory profiles. People living with HIV (PLWH) could face a higher risk of hospitalization and mortality from COVID-19, depending on their immunosuppression levels. This study describes inflammatory markers in COVID-19 clinical outcomes with and without HIV infection.
View Article and Find Full Text PDFLife (Basel)
January 2025
Laboratory of Toxicology and Risk Assessment, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy.
Nucleic acid (NA)-based drugs are promising therapeutics agents. Beyond efficacy, addressing safety concerns-particularly those specific to this class of drugs-is crucial. Here, we propose an in vitro approach to screen for potential adverse off-target effects of NA-based drugs.
View Article and Find Full Text PDFLife (Basel)
January 2025
College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China.
Lactoferrin (LF), a member of the transferrin family, is widely present in mammalian milk and other secretions, exhibiting anti-inflammatory, antibacterial, and anti-infective properties. Although the biological functions of LF have been extensively studied, there are few reports on its effects and molecular mechanisms concerning bovine mastitis caused by bacterial infection. This study used bovine mammary epithelial cells (BMECs) cultured in vitro as the research model.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
Neuroinflammation is involved in various neurological and neurodegenerative disorders in which the activation of microglia is one of the key factors. In this study, we examined the anti-inflammatory effects of the flavonoids nobiletin (5,6,7,8,3',4'-hexamethoxyflavone) and eriodictyol (3',4',5,7-tetraxydroxyflavanone) on human microglia cell line activation stimulated by either lipopolysaccharide (LPS), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) full-length Spike protein (FL-Spike), or the mycotoxin ochratoxin A (OTA). Human microglia were preincubated with the flavonoids (10, 50, and 100 µM) for 2 h, following which, they were stimulated for 24 h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!