AtMPB2C is the Arabidopsis (Arabidopsis thaliana) homolog of MPB2C, a microtubule-associated host factor of tobacco mosaic virus movement protein that was been previously identified in Nicotiana tabacum. To analyze the endogenous function of AtMPB2C and its role in viral infections, transgenic Arabidopsis plant lines stably overexpressing green fluorescent protein (GFP)-AtMPB2C were established. The GFP-AtMPB2C fusion protein was detectable in various cell types and organs and localized at microtubules in a punctuate pattern or in filaments. To determine whether overexpression impacted on the cortical microtubular cytoskeleton, GFP-AtMPB2C-overexpressing plants were compared to known microtubular marker lines. In rapidly elongated cell types such as vein cells and root cells, GFP-AtMPB2C overexpression caused highly unordered assemblies of cortical microtubules, a disturbed, snake-like microtubular shape, and star-like crossing points of microtubules. Phenotypically, GFP-AtMPB2C transgenic plants showed retarded growth but were viable and fertile. Seedlings of GFP-AtMPB2C transgenic plants were characterized by clockwise twisted leaves, clustered stomata, and enhanced drought tolerance. GFP-AtMPB2C-overexpressing plants showed increased resistance against oilseed rape mosaic virus, a close relative of tobacco mosaic virus, but not against cucumber mosaic virus when compared to Arabidopsis wild-type plants. These results suggest that AtMPB2C is involved in the alignment of cortical microtubules, the patterning of stomata, and restricting tobamoviral infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649411PMC
http://dx.doi.org/10.1104/pp.108.130450DOI Listing

Publication Analysis

Top Keywords

mosaic virus
16
cortical microtubules
12
tobacco mosaic
8
cell types
8
gfp-atmpb2c-overexpressing plants
8
gfp-atmpb2c transgenic
8
transgenic plants
8
microtubules
5
gfp-atmpb2c
5
plants
5

Similar Publications

Plant viruses pose a significant threat to global agriculture and require efficient tools for their timely detection. We present AutoPVPrimer, an innovative pipeline that integrates artificial intelligence (AI) and machine learning to accelerate the development of plant virus primers. The pipeline uses Biopython to automatically retrieve different genomic sequences from the NCBI database to increase the robustness of the subsequent primer design.

View Article and Find Full Text PDF

Passion fruit (Passiflora edulis) is a commercially important crop known for its nutritional value, high antioxidant content, and use in beverages and desserts. Gulupa baciliform virus A (GBVA), tentatively named Badnavirus in the family Caulimoviridae, is a cryptic circular double-stranded DNA (dsDNA, ≈6,951 bps) virus recently reported in Colombia with asymptomatic infection of passion fruit (Sepúlveda et al. 2022).

View Article and Find Full Text PDF

Passion fruit woodiness disease (PWD), caused by cowpea aphid-borne mosaic virus (CABMV), severely damages leaves and fruits, compromising passion fruit production. The dynamics of this infection in Passiflora spp. are still poorly understood.

View Article and Find Full Text PDF

Screening for broad-spectrum resistance to Turnip mosaic virus.

Breed Sci

September 2024

Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, Sendai, Miyagi 980-8572, Japan.

Turnip mosaic virus (TuMV) poses a major threat to crops like Chinese cabbage, causing significant economic losses. A viable and effective strategy to manage such diseases is by improvement of genetic-based viral resistance. To achieve this, it is important to have detailed and wide-ranging genetic resources, necessitating genetic exploration.

View Article and Find Full Text PDF

Suppressing Tymovirus replication in plants using a variant of ubiquitin.

PLoS Pathog

January 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!