Apolipoprotein C-III (apoC-III) inhibits triglyceride hydrolysis and has been implicated in coronary artery disease. Through a genome-wide association study, we have found that about 5% of the Lancaster Amish are heterozygous carriers of a null mutation (R19X) in the gene encoding apoC-III (APOC3) and, as a result, express half the amount of apoC-III present in noncarriers. Mutation carriers compared with noncarriers had lower fasting and postprandial serum triglycerides, higher levels of HDL-cholesterol and lower levels of LDL-cholesterol. Subclinical atherosclerosis, as measured by coronary artery calcification, was less common in carriers than noncarriers, which suggests that lifelong deficiency of apoC-III has a cardioprotective effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673993 | PMC |
http://dx.doi.org/10.1126/science.1161524 | DOI Listing |
Mol Genet Genomic Med
February 2025
Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden.
Background: SYNGAP1 encodes a Ras/Rap GTPase-activating protein that is predominantly expressed in the brain with the functional roles in regulating synaptic plasticity, spine morphogenesis, and cognition function. Pathogenic variants in SYNGAP1 have been associated with a spectrum of neurodevelopmental disorders characterized by developmental delays, intellectual disabilities, epilepsy, hypotonia, and the features of autism spectrum disorder. The aim of this study was to identify a novel SYNGAP1 gene variant linked to neurodevelopmental disorders and to evaluate the pathogenicity of the detected variant.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
College of Life Sciences, Beijing Normal University, Beijing 100875, China.
Mammalian J-domain protein DNAJC9 interacts with histones H3-H4 and is important for cell proliferation. However, its exact function remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, loss of Djc9, the ortholog of DNAJC9, renders the histone chaperone Asf1 no longer essential for growth.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, 1161 21st Ave S, Nashville, Tennessee, 37232, United States of America.
Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1).
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy.
Inherited retinal diseases (IRDs) are clinically and genetically heterogeneous disorders characterized by progressive photoreceptor degeneration and irreversible vision loss. MicroRNAs (miRNAs), a class of endogenous non-coding RNAs with post-transcriptional regulatory properties, are known to play a major role in retinal function, both in physiological and pathological conditions. Given their ability to simultaneously modulate multiple molecular pathways, miRNAs represent promising therapeutic tools for disorders with high genetic heterogeneity, such as IRDs.
View Article and Find Full Text PDFMol Genet Genomic Med
February 2025
Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy.
Background: Sensorineural hearing loss (SNHL) is a frequent manifestation of syndromic inherited retinal diseases (IRDs), exemplified by the very rare form of autosomal-dominant Leber congenital amaurosis with early onset deafness (LCAEOD; OMIM #617879). LCAEOD was first described in 2017 in four families segregating heterozygous missense mutations in TUBB4B, a gene encoding a β-tubulin isotype. To date, only eight more families with similar TUBB4B-associated sensorineural disease (SND) have been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!