Fluorescence detection of the movement of single KcsA subunits reveals cooperativity.

Proc Natl Acad Sci U S A

Département de Physique and GEPROM, Université de Montréal, Montréal, QC, Canada H3C 3J7.

Published: December 2008

The prokaryotic KcsA channel is gated at the helical bundle crossing by intracellular protons and inactivates at the extracellular selectivity filter. The C-terminal transmembrane helix has to undergo a conformational change for potassium ions to access the central cavity. Whereas a partial opening of the tetrameric channel is suggested to be responsible for subconductance levels of ion channels, including KcsA, a cooperative opening of the 4 subunits is postulated as the final opening step. In this study, we used single-channel fluorescence spectroscopy of KcsA to directly observe the movement of each subunit and the temporal correlation between subunits. Purified KcsA channels labeled at the C terminus near the bundle crossing have been inserted into supported lipid bilayer, and the fluorescence traces analyzed by means of a cooperative or independent Markov model. The analysis revealed that the 4 subunits do not move fully independently but instead showed a certain degree of cooperativity. However, the 4 subunits do not simply open in 1 concerted step.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2629256PMC
http://dx.doi.org/10.1073/pnas.0807056106DOI Listing

Publication Analysis

Top Keywords

bundle crossing
8
kcsa
5
subunits
5
fluorescence detection
4
detection movement
4
movement single
4
single kcsa
4
kcsa subunits
4
subunits reveals
4
reveals cooperativity
4

Similar Publications

The trained heart adapts through geometric changes influenced by concentric and eccentric hypertrophy, depending on the predominance of the isometric or dynamic components of the exercise performed. Additionally, alterations in heart rhythm may occur due to increased vagal system activity. Cardiological evaluation with an electrocardiogram (ECG) aims to identify cardiac conditions that could temporarily or permanently disqualify an athlete from competition.

View Article and Find Full Text PDF

Peptides can be designed to self-assemble into predefined supramolecular nanostructures, which are then employed as biomaterials in a range of applications, including tissue engineering, drug delivery, and vaccination. However, current self-assembling peptide (SAP) hydrogels exhibit inadequate self-healing capacities and necessitate the use of sophisticated printing apparatus, rendering them unsuitable for 3D printing under physiological conditions. Here, we report a precisely designed charged peptide, Z5, with the object of investigating the impact of electrostatic interactions on the self-assembly and the rheological properties of the resulting hydrogels.

View Article and Find Full Text PDF

Background: Humanitarian mine action (HMA) stakeholders have an organized presence with well-resourced medical capability in many conflict and post-conflict settings. Humanitarian mine action has the potential to positively augment local trauma care capacity for civilian casualties of explosive ordnance (EO) and explosive weapons (EWs). Yet at present, few strategies exist for coordinated engagement between HMA and the health sector to support emergency care system strengthening to improve outcomes among EO/EW casualties.

View Article and Find Full Text PDF

Background: We aimed to describe the epidemiology, cross-transmission, interventions, and outcomes of carbapenem-resistant (CRKP) infections in the hematological malignancies (HM) department of a hospital in China.

Methods: This prospective study was divided into three stages from 2014 to 2022: Period 1 (from 1 January 2014 to 4 March 2021), Period 2 (from 5 March 2021 to 31 December 2021), and Period 3 (from 1 January 2022 to 31 December 2022), with different measures implemented at each stage to evaluate the rate of new infections. The risk factors, epidemiological characteristics, data from all patients with CRKP, NGS gene sequencing molecular epidemiology analysis, and cross-transmission were described.

View Article and Find Full Text PDF

Fascin structural plasticity mediates flexible actin bundle construction.

Nat Struct Mol Biol

January 2025

Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA.

Fascin cross-links actin filaments (F-actin) into bundles that support tubular membrane protrusions including filopodia and stereocilia. Fascin dysregulation drives aberrant cell migration during metastasis, and fascin inhibitors are under development as cancer therapeutics. Here, we use cryo-EM, cryo-electron tomography coupled with custom denoising and computational modeling to probe human fascin-1's F-actin cross-linking mechanisms across spatial scales.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!