In pancreatic beta-cells, the pituitary adenylate cyclase-activating polypeptide (PACAP) exerts a potent insulin secretory effect via PAC(1) and VPAC receptors (Rs) through the Galpha(s)/cAMP/protein kinase A pathway. Here, we investigated the mechanisms linking PAC(1)R to ERK1/2 activation in INS-1E beta-cells and pancreatic islets. PACAP caused a transient (5 min) increase in ERK1/2 phosphorylation via PAC(1)Rs and promoted nuclear translocation of a fraction of cytosolic p-ERK1/2. Both protein kinase A- and Src-dependent pathways mediated this transient ERK1/2 activation. Moreover, PACAP potentiated glucose-induced long-lasting ERK1/2 activation. Blocking Ca(2+) influx abolished glucose-induced ERK1/2 activation and PACAP potentiating effect. Glucose stimulation during KCl depolarization showed that, in addition to the triggering signal (rise in cytosolic [Ca(2+)]), the amplifying pathway was also involved in glucose-induced sustained ERK1/2 activation and was required for PACAP potentiation. The finding that at 30 min glucose-induced p-ERK1/2 was detected in both cytosol and nucleus while the potentiating effect of PACAP was only observed in the cytosol, suggested the involvement of the scaffold protein beta-arrestin. Indeed, beta-arrestin 1 (beta-arr1) depletion (in beta-arr1 knockout mouse islets or in INS-1E cells by siRNA) completely abolished PACAP potentiation of long-lasting ERK1/2 activation by glucose. Finally, PACAP potentiated glucose-induced CREB transcriptional activity and IRS-2 mRNA expression mainly via the ERK1/2 signaling pathway, and likewise, beta-arr1 depletion reduced the PACAP potentiating effect on IRS-2 expression. These results establish for the first time that PACAP potentiates glucose-induced long-lasting ERK1/2 activation via a beta-arr1-dependent pathway and thus provide new insights concerning the mechanisms of PACAP and glucose actions in pancreatic beta-cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M807595200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!