The worldwide increase in the occurrence and dissemination of KPC beta-lactamases among gram-negative pathogens makes critical the early detection of these enzymes. Boronic acid disk tests using different antibiotic substrates were evaluated for detection of KPC-possessing Klebsiella pneumoniae isolates. A total of 57 genotypically confirmed KPC-possessing K. pneumoniae isolates with varying carbapenem MICs were examined. To measure the specificity of the tests, 106 non-KPC-possessing isolates (89 K. pneumoniae and 17 Escherichia coli isolates) were randomly selected among those exhibiting reduced susceptibility to cefoxitin, expanded-spectrum cephalosporins, or carbapenems. As many as 56, 53, and 40 of the non-KPC-possessing isolates harbored extended-spectrum beta-lactamases, metallo-beta-lactamases, and plasmid-mediated AmpC beta-lactamases, respectively. By use of CLSI methodology and disks containing imipenem, meropenem, or cefepime, either alone or in combination with 400 microg of boronic acid, all 57 KPC producers gave positive results (sensitivity, 100%) whereas all 106 non-KPC producers were negative (specificity, 100%). The meropenem duplicate disk with or without boronic acid demonstrated the largest differences in inhibition zone diameters between KPC producers and non-KPC producers. By use of disks containing ertapenem, all isolates were correctly differentiated except for five AmpC producers that gave false-positive results (sensitivity, 100%; specificity, 95.3%). These practical and simple boronic acid disk tests promise to be very helpful for the accurate differentiation of KPC-possessing K. pneumoniae isolates, even in regions where different broad-spectrum beta-lactamases are widespread.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643660 | PMC |
http://dx.doi.org/10.1128/JCM.01922-08 | DOI Listing |
Biomolecules
January 2025
Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA.
Cutaneous T-cell lymphoma (CTCL) is a rare T-cell malignancy characterized by inflamed and painful rash-like skin lesions that may affect large portions of the body's surface. Patients experience recurrent infections due to a compromised skin barrier and generalized immunodeficiency resulting from a dominant Th2 immune phenotype of CTCL cells. Given the role of the unfolded protein response (UPR) in normal and malignant T-cell development, we investigated the impact of UPR-inducing drugs on the viability, transcriptional networks, and Th2 phenotype of CTCL.
View Article and Find Full Text PDFBMC Neurol
January 2025
Department of Hematology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
Background: Multiple myeloma (MM) with Guillain-Barré syndrome (GBS) is relatively rare, and the specific mechanism is still unclear. The previous infection, surgery, and medication use may have contributed to the occurrence of GBS. The use of bortezomib in patients with MM can easily lead to peripheral neuropathy, which is similar to the symptoms of GBS, making it challenging to diagnose GBS.
View Article and Find Full Text PDFCancer Chemother Pharmacol
January 2025
Department of Hematology, NHO Nagoya Medical Center, Nagoya, Japan.
Purpose: A comprehensive analysis of metabolites (metabolomics) has been proposed as a new strategy for analyzing liquid biopsies and has been applied to identify biomarkers predicting clinical responses or adverse events associated with specific treatments. Here, we aimed to identify metabolites associated with bortezomib (Btz)-related toxicities and response to treatment in newly diagnosed multiple myeloma (MM).
Methods: Fifty-four plasma samples from transplant-ineligible MM patients enrolled in a randomized phase II study comparing two less-intensive regimens of melphalan, prednisolone and Btz (MPB) were subjected to the lipidomic profiling analysis.
Biosensors (Basel)
January 2025
Department of Chemical Engineering, University of California Davis, Davis, CA 95616, USA.
Polydiacetylenes (PDAs) are conjugated polymers that are well known for their colorimetric transition from blue to red with the application of energetic stimulus. Sensing platforms based on polymerized diacetylene surfactant vesicles and other structures have been widely demonstrated for various colorimetric biosensing applications. Although less studied and utilized, the transition also results in a change from a non-fluorescent to a highly fluorescent state, making polydiacetylenes useful for both colorimetric and fluorogenic sensing applications.
View Article and Find Full Text PDFGels
January 2025
"Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania.
In this present study, we developed and characterized a series of supramolecular G4 hydrogels by integrating -cyclodextrin (-CD) and boronic acid linkers into a supramolecular matrix to enhance antibacterial activity against (). We systematically investigated how varying the number of free boronic acid moieties (ranging from two to six), along with guanosine and β-CD content, influences both the structural integrity and antimicrobial efficacy of these materials. Comprehensive characterization using FTIR, circular dichroism, X-ray diffraction, SEM, AFM, and rheological measurements confirmed successful synthesis and revealed that higher boronic acid content correlated with a stronger, more organized network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!