A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: Network is unreachable

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Selective blockade of PGE2 EP1 receptor protects brain against experimental ischemia and excitotoxicity, and hippocampal slice cultures against oxygen-glucose deprivation. | LitMetric

AI Article Synopsis

  • COX-2 enzyme levels rise during brain injuries like excitotoxicity and ischemia, leading to neurotoxicity, but COX-2 inhibitors carry significant side effects.
  • The study tested the EP1 receptor antagonist, ONO-8713, to see if it could improve stroke outcomes and protect brain tissue from damage due to oxygen-glucose deprivation (OGD).
  • Results showed that ONO-8713 significantly reduced brain damage in mice subjected to stroke and NMDA-induced excitotoxicity, suggesting that targeting the EP1 receptor could be a valuable treatment strategy for neurological conditions.

Article Abstract

Cyclooxygenase-2 (COX-2) enzyme increases abnormally during excitotoxicity and cerebral ischemia and promotes neurotoxicity. Although COX-2 inhibitors could be beneficial, they have significant side effects. We and others have shown that the EP1 receptor is important in mediating PGE2 toxicity. Here, we tested the hypothesis that pretreatment with a highly selectiveEP1 receptor antagonist, ONO-8713, would improve stroke outcome and that post-treatment would attenuate NMDA-induced acute excitotoxicity and protect organotypic brain slices from oxygen-glucose deprivation (OGD)-induced toxicity. Male C57BL/6 mice were injected intracerebroventricularly with ONO-8713 before being subjected to 90-min middle cerebral artery occlusion (MCAO) and 96-h reperfusion.Significant reduction in infarct size was observed in groups given 0.1 (25.9 +/- 4.7%) and 1.0 nmol(27.7 +/- 2.8%) ONO-8713 as compared with the vehicle-treated control group. To determine the effects of ONO-8713 post-treatment on NMDA induced excitotoxicity, mice were given a unilateral intrastriatal NMDA injection followed by one intraperitoneal injection of 10 microg/kg ONO-8713, 1 and 6 h later. Significant attenuation of brain damage (26.6 +/-4.9%) was observed at 48 hin the ONO-8713-treated group. Finally, brain slice cultures were protected (25.5 +/- 2.9%) by the addition of ONO-8713 to the medium after OGD.These findings support the notion that the EP1receptor propagates neurotoxicity and that selective blockade could be considered as a potential preventive and/or therapeutic tool against ischemic/hypoxic neurological conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015740PMC
http://dx.doi.org/10.1007/BF03033858DOI Listing

Publication Analysis

Top Keywords

selective blockade
8
ep1 receptor
8
slice cultures
8
oxygen-glucose deprivation
8
ono-8713
6
blockade pge2
4
pge2 ep1
4
receptor protects
4
brain
4
protects brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!