A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An ex vivo preparation of the intact mouse vomeronasal organ and accessory olfactory bulb. | LitMetric

An ex vivo preparation of the intact mouse vomeronasal organ and accessory olfactory bulb.

J Neurosci Methods

Department of Anatomy and Neurobiology, Washington University School of Medicine, Campus Box 8108, 660 S. Euclid Ave, Saint Louis, MO 63110, United States.

Published: March 2009

The accessory olfactory system (AOS) in mammals detects and processes information from liquid-phase environmental odorants, including pheromones. The AOS carries out tasks such as individual recognition, learning, and decision-making with relatively few stages of neural processing; it thus represents an attractive system for investigating the neural circuits that carry out these functions. Progress in understanding the AOS has long been impeded by its relative inaccessibility to standard physiological approaches. In this report, we detail a novel dissection and tissue perfusion strategy that improves access to the accessory olfactory bulb (AOB) while maintaining afferent connections from sensory neurons in the vomeronasal organ (VNO). Mitral cells demonstrated spontaneous and evoked firing patterns consistent with recent in vivo reports. We assayed cell degradation in the AOB tissue using Fluoro-Jade C and found that the VNO and AOB glomerular, external plexiform, and mitral cell layers showed minimal signs of degeneration for up to 6h. Whereas histology indicated some degeneration in the deep inhibitory granule cell layer over time, electrophysiological assays demonstrated intact inhibitory function on mitral cells. Pharmacological blockade of GABA(A) receptors with 3microM SR95531 (gabazine) resulted in increased evoked mitral cell activity. Furthermore, mitral cells displayed suppression of responses to preferred urine stimuli when preferred and non-preferred stimuli were mixed, an effect thought to involve functional laterally connected inhibition. These results demonstrate the utility of whole mount ex vivo preparations for studying sensory processing in the AOS, and suggest that similar strategies may improve experimental access to other difficult-to-study neural circuits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709076PMC
http://dx.doi.org/10.1016/j.jneumeth.2008.11.013DOI Listing

Publication Analysis

Top Keywords

accessory olfactory
12
mitral cells
12
vomeronasal organ
8
olfactory bulb
8
neural circuits
8
mitral cell
8
mitral
5
vivo preparation
4
preparation intact
4
intact mouse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!