Acoustic emission monitoring and 3D visualization of polymerization-induced damage of acrylic polymer materials.

J Biomed Mater Res B Appl Biomater

Bioengineering Sciences Research Group, University of Southampton, Southampton, United Kingdom.

Published: July 2009

AI Article Synopsis

Article Abstract

To improve the longevity of total hip replacements, techniques such as vacuum mixing have been developed to reduce the amount of porosity within the cement. However, data from the Swedish hip registry has demonstrated an increased risk of revision for vacuum-mixed cemented devices in the first 5 years postoperatively. Theoretical and experimental evidence suggests that stresses induced by cement shrinkage during polymerization alone are sufficient to induce cracking. However, very little evidence of preload cracking is available due to the limitations of current inspection methods. The present work combines two forms of nondestructive evaluation technique to assess the state of an acrylic-based polymer mantle both in real time during polymerization using the acoustic emission (AE) technique and immediately post polymerization using micro-computed tomography (CT). AE data enabled the location, type, and chronology of events to be obtained. The use of micro-CT in combination with a radiopaque dye-penetrant was shown to be an effective method for highlighting preload polymerization cracking and verified the findings of the AE data. The AE data indicated that the first signs of damage occurred approximately 3-6 min after the peak temperature obtained during exotherm, confirming that thermal contraction rather than pure volumetric shrinkage is the dominant factor in preload damage initiation. The methodology developed in this study enables detailed information on the condition of a cement mantle to be obtained without the need for serial sectioning.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.31276DOI Listing

Publication Analysis

Top Keywords

acoustic emission
8
emission monitoring
4
monitoring visualization
4
visualization polymerization-induced
4
polymerization-induced damage
4
damage acrylic
4
acrylic polymer
4
polymer materials
4
materials improve
4
improve longevity
4

Similar Publications

The shear resistance of filling joints is an important factor affecting the stability of rock joints. Pressure-shear tests of cement-filled joints were carried out. Combined with the acoustic emission (AE) technique, the effects of normal stress, roughness and filling degree on the shear strength, damage morphology and damage evolution of cement-filled joints were investigated.

View Article and Find Full Text PDF

Since traffic flow has not been generated, a traffic noise prediction model based on actual traffic state data cannot be directly applied to the planned road network. Therefore, a regional traffic noise prediction method is proposed to find the upper limit of network noise emission based on design elements. The model is developed with noise predictions of the basic road section, interrupted/continuous intersections, and regional network.

View Article and Find Full Text PDF

Synchronized acoustic emission and high-speed imaging of cavitation-induced atomization: The role of shock waves.

Ultrason Sonochem

January 2025

School of Engineering Computing and Mathematics, Oxford Brookes University, Oxford, UK; Department of Materials, University of Oxford, Oxford, UK.

This study experimentally investigates the role of cavitation-induced shock waves in initiating and destabilizing capillary (surface) waves on a droplet surface, preceding atomization. Acoustic emissions and interfacial wave dynamics were simultaneously monitored in droplets of different liquids (water, isopropyl alcohol and glycerol), using a calibrated fiber-optic hydrophone and high-speed imaging. Spectral analysis of the hydrophone data revealed distinct subharmonic frequency peaks in the acoustic spectrum correlated with the wavelength of capillary waves, which were optically captured during the onset of atomization from the repetitive imploding bubbles.

View Article and Find Full Text PDF

With the increasing height and rotor diameter of wind turbines, bat activity monitoring within the risk area becomes more challenging. This study investigates the impact of Unmanned Aerial Systems (UAS) on bat activity and explores acoustic bat detection via UAS as a new data collection method in the vicinity of wind turbines. We tested two types of UAS, a multicopter and a Lighter Than Air (LTA) UAS, to understand how they may affect acoustically recorded and analyzed bat activity level for three echolocation groups: Pipistrelloid, Myotini, and Nyctaloid.

View Article and Find Full Text PDF

Introduction: Eradication of residual biofilm from root canal dentine is critical for the success of regenerative endodontic procedures (REPs).

The Aim Of The Study: To evaluate the influence of ultrasonically activated irrigants in concentrations used for REPs for removal of dual-species biofilm from three-dimensionally printed tooth models with attached dentine samples.

Methodology: Seventy-two three-dimensionally printed teeth models were fabricated with a standardized slot in the apical third of the root to ensure a precise fit with a human root dentine specimen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!