A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A new method for the aqueous functionalization of superparamagnetic Fe2O3 nanoparticles. | LitMetric

A new method for the aqueous functionalization of superparamagnetic Fe2O3 nanoparticles.

Contrast Media Mol Imaging

Instituto de Estudios Biofuncionales, Universidad Complutense, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Paseo Juan XXIII no. 1, Madrid, Spain.

Published: January 2009

A new methodology for the synthesis of hydrophilic iron oxide nanoparticles has been developed. This new method is based on the direct chemical modification of the nanoparticles' surfactant molecules. Using this methodology both USPIO (ultrasmall super paramagnetic iron oxide) (hydrodynamic size smaller than 50 nm) and SPIO (super paramagnetic iron oxide) (hydrodynamic size bigger than 50 nm) were obtained. In addition, we also show that it is possible to further functionalize the hydrophilic nanoparticles via covalent chemistry in water. The magnetic properties of these nanoparticles were also studied, showing their potential as MRI contrast agents.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmmi.254DOI Listing

Publication Analysis

Top Keywords

iron oxide
12
super paramagnetic
8
paramagnetic iron
8
oxide hydrodynamic
8
hydrodynamic size
8
method aqueous
4
aqueous functionalization
4
functionalization superparamagnetic
4
superparamagnetic fe2o3
4
nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!