The solvation of the lithium ion in LiTFSI-doped ionic liquids based on alkyl-substituted imidazolium cations and bis(trifluoromethanesulfonyl)imide anions (TFSI-) was investigated by infrared and Raman spectroscopies. The spectral changes occurring for some TFSI- vibrations sensitive to the lithium coordination were analyzed with the help of DFT calculations. In addition, the vibrations of the lithium ion in its solvating cage were found to produce a broad IR absorption band centered at 374 cm(-1). For low to moderate LiTFSI mole fractions, 0.08 < x < 0.2, the [Li(TFSI)2]- solvating cage was found to involve bidentate coordinations of Li+ with two oxygen atoms of one anion in the trans (C2) conformation and two oxygen atoms of the other anion in the cis (C1) conformation. At higher LiTFSI concentration, up to x = 0.5, the lithium ion-TFSI coordination number progressively becomes less than 2, indicating the possible formation of aggregates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp806124wDOI Listing

Publication Analysis

Top Keywords

lithium ion
12
litfsi-doped ionic
8
ionic liquids
8
solvating cage
8
oxygen atoms
8
atoms anion
8
lithium
5
spectroscopic identification
4
identification lithium
4
ion transporting
4

Similar Publications

Correction for 'Formulation and mechanism of copper tartrate - a novel anode material for lithium-ion batteries' by Matthew Teusner , , 2023, , 21436-21447, https://doi.org/10.1039/D3CP02030D.

View Article and Find Full Text PDF

Lithium-ion battery cathodes are manufactured by coating slurries, liquid suspensions that typically include carbon black (CB), active material, and polymer binder. These slurries have a yield stress and complex rheology due to CB's microstructural response to flow. While optimizing the formulation and processing of slurries is critical to manufacturing defect-free and high-performance cathodes, engineering the shear rheology of cathode slurries remains challenging.

View Article and Find Full Text PDF

Fast-Charging Lithium-Ion Batteries Enabled by Magnetically Aligned Electrodes.

ACS Nano

January 2025

Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.

With the increasing popularity of electric transportation over the past several years, fast-charging lithium-ion batteries are highly demanded for shortening electric vehicles' charging time. Extensive efforts have been made on material development and electrode engineering; however, few of them are scalable and cost-effective enough to be potentially incorporated into the current battery production. Here, we propose a facile magnetic templating method for preparing LiFePO (LFP) cathodes with vertically aligned graphene sheets to realize fast-charging properties at a practical loading of 20 mg cm.

View Article and Find Full Text PDF

With the global surge in lithium-ion batteries (LIBs), recycling spent LIBs has become an essential and urgent research area. In the context of global efforts to promote sustainable development, and achieve energy conservation and emission reduction, advancing recycling technologies that efficiently recover critical metals like Ni, Co, Mn, and Li is crucial. Herein, a novel and environmentally friendly simplified process for selectively extracting critical metals from the mixed electrode materials of spent LIBs is proposed for the first time.

View Article and Find Full Text PDF

Soluble Covalent Organic Frameworks as Efficient Lithiophilic Modulator for High-Performance Lithium Metal Batteries.

Angew Chem Int Ed Engl

January 2025

City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.

Lithium metal batteries (LMBs) are regarded as the potential alternative of lithium-ion batteries due to their ultrahigh theoretical specific capacity (3860 mAh g-1). However, severe instability and safety problems caused by the dendrite growth and inevitable side reactions have hindered the commercialization of LMBs. To solve them, in this contribution, a design strategy of soluble lithiophilic covalent organic frameworks (COFs) is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!