Cetylpyridinium chloride at the mica-water interface: incomplete monolayer and bilayer structures.

Langmuir

Center for Radiation Protection and Radioecology (ZSR), Leibniz Universitat Hannover, Herrenhauser Str. 2, 30419 Hannover, Germany.

Published: January 2009

Monte Carlo simulations of the interface between the cleaved surface of muscovite mica and aqueous cetylpyridinium chloride (CPCl) solution at ambient conditions are reported. Simulation results reveal that monolayer or bilayer aggregates of CP(+) ions at the muscovite-water interface remain incomplete up to a CP(+) coverage compensating the negative charge of muscovite. It is predicted that at this CP(+) coverage only a partial desorption of K(+) ions occurs and the two aggregates can be distinguished with help of the X-ray reflectivity technique. Formation of inner-sphere and outer-sphere adsorption complexes of CP(+) ions at distances of approximately 3 A and approximately 5 A, respectively, from the surface is observed. Despite an increasing adsorption of CP(+) ions, the structure of the adsorbed water film is largely preserved within approximately 5 A from the surface. A strong decrease of water density beyond this distance and formation of "adsorbed K(+)"-Cl(-) ion pairs result in coadsorption of Cl(-) in an amount equivalent to 1/4 of the negative charge of muscovite as close as approximately 4.3-4.8 A to the surface for the incomplete bilayer aggregate. For the incomplete monolayer aggregate, no segregation between K(+) and CP(+) ions and a displacement of K(+) ions into the adsorption sites approximately 1.6 A from the surface are observed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la802450qDOI Listing

Publication Analysis

Top Keywords

cp+ ions
16
cetylpyridinium chloride
8
incomplete monolayer
8
monolayer bilayer
8
cp+ coverage
8
negative charge
8
charge muscovite
8
surface observed
8
cp+
6
ions
6

Similar Publications

Relationship assessment of microbial community and cometabolic consumption of 2-chlorophenol.

Appl Microbiol Biotechnol

January 2025

Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Iztapalapa, CDMX, Mexico City, Mexico.

The relationship of microbial community and cometabolic consumption of 2-chlorophenol (2-CP) in a nitrifying sequencing batch reactor (SBR) was studied. The assessment of the population dynamics of the nitrifying sludge during the cometabolic 2-CP consumption with increasing ammonium (NH) concentrations in the SBR showed the presence of 39 different species of which 10 were always present in all cycles. Fifty-five percent of the species found were grouped as Proteobacteria (45% as β-proteobacteria and 10% as γ-proteobacteria class), 30% as Acidobacteria, and 15% as Deinococcus-Thermus phyla.

View Article and Find Full Text PDF

Sugarcane tops silage (STS), as a source of roughage for ruminants, is rich in water-soluble carbohydrate (WSC) content, which significantly affects silage quality. Citric acid (CA) is a low-cost natural antimicrobial agent that can inhibit undesirable microbes and improve silage quality. The objectives of this study were to investigate the effects of CA on the chemical composition, fermentation quality, microbial communities, and metabolic pathways of STS with high and low WSC contents before or after aerobic exposure.

View Article and Find Full Text PDF

This study synthesizes a novel three-dimensional (3D) porous coordination polymer (CP), {[Co(L)₀.₅(H₂O)]·NMP·H₂O} (1), via a solvothermal method in a mixed solvent of water and NMP (1-methyl-2-pyrrolidinone), reacting Co(II) ions with H₄L (1,4-bis(5,6-carboxybenzimidazolylmethyl)benzene). The CP exhibits unique fluorescence properties, emitting at 420 nm under UV light excitation at 350 nm, and serves as a carrier for Mesalazine (MSZ) in therapeutic applications.

View Article and Find Full Text PDF

Three fluorescent Zn coordaintion polymers (CPs) have been synthesized from the reactions of Zn(NO3)2∙6H2O, benzene-1,4-dicarboxylic acid (1,4-H2bdc), and angular carbazole-derived bispyridyl ligands (Cz-3,6-bpy or Cz-Pr-3,6-bpy). CPs 1-3 all adopt similar two-dimensional (2D) ring-and-rod layer structures, described as topologically 4-connected 2∙65 nets where the Zn(II) centers act as 4-connected nodes. CPs 1 and 2 are a pair of solvent-mediated supramolecular isomers where the former shows a two-fold interlocked 2D → 2D polyrotaxane-like entangled net and the latter reveals a four-fold interpenetrated 2D → 3D polyrotaxane entanglement.

View Article and Find Full Text PDF

Choroid plexus-targeted viral gene therapy for alpha-mannosidosis, a prototypical neurometabolic lysosomal storage disease.

Hum Mol Genet

January 2025

Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.

The choroid plexuses (CP) are highly vascularized structures that project into the ventricles of the vertebrate brain. The polarized epithelia of the CP produce cerebrospinal fluid by transporting water and ions into the ventricles from the blood and normally secrete a large number of proteins. We assessed the feasibility of selective CP transduction with recombinant adeno-associated virus (rAAV) gene therapy vectors for treatment of lysosomal storage disease (LSD), a broad category of neurometabolic illness associated with significant burdens to affected patients and their families.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!