Background: Ulcerative colitis (UC) and Crohn's disease (CD) are polygenic chronic inflammatory bowel diseases (IBD) of high prevalence that are associated with considerable morbidity. The hedgehog (HH) signalling pathway, which includes the transcription factor glioma-associated oncogene homolog 1 (GLI1), plays vital roles in gastrointestinal tract development, homeostasis, and malignancy. We identified a germline variation in GLI1 (within the IBD2 linkage region, 12q13) in patients with IBD. Since this IBD-associated variant encodes a GLI1 protein with reduced function and our expression studies demonstrated down-regulation of the HH response in IBD, we tested whether mice with reduced Gli1 activity demonstrate increased susceptibility to chemically induced colitis.
Methods And Findings: Using a gene-wide haplotype-tagging approach, germline GLI1 variation was examined in three independent populations of IBD patients and healthy controls from Northern Europe (Scotland, England, and Sweden) totalling over 5,000 individuals. On log-likelihood analysis, GLI1 was associated with IBD, predominantly UC, in Scotland and England (p < 0.0001). A nonsynonymous SNP (rs2228226C-->G), in exon 12 of GLI1 (Q1100E) was strongly implicated, with pooled odds ratio of 1.194 (confidence interval = 1.09-1.31, p = 0.0002). GLI1 variants were tested in vitro for transcriptional activity in luciferase assays. Q1100E falls within a conserved motif near the C terminus of GLI1; the variant GLI protein exhibited reduced transactivation function in vitro. In complementary expression studies, we noted the colonic HH response, including GLI1, patched (PTCH), and hedgehog-interacting protein (HHIP), to be down-regulated in patients with UC. Finally, Gli1(+/lacZ) mice were tested for susceptibility to dextran sodium sulphate (DSS)-induced colitis. Clinical response, histology, and expression of inflammatory cytokines and chemokines were recorded. Gli1(+/lacZ) mice rapidly developed severe intestinal inflammation, with considerable morbidity and mortality compared with wild type. Local myeloid cells were shown to be direct targets of HH signals and cytokine expression studies revealed robust up-regulation of IL-12, IL-17, and IL-23 in this model.
Conclusions: HH signalling through GLI1 is required for appropriate modulation of the intestinal response to acute inflammatory challenge. Reduced GLI1 function predisposes to a heightened myeloid response to inflammatory stimuli, potentially leading to IBD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2596854 | PMC |
http://dx.doi.org/10.1371/journal.pmed.0050239 | DOI Listing |
Cancer Cell Int
December 2024
Department of Hematology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
Background: Drug resistance remains a significant obstacle to Acute myeloid leukemia (AML) successful treatment, often leading to therapeutic failure. Our previous studies demonstrated that Glioma-associated oncogene-1 (GLI1) reduces chemotherapy sensitivity and promotes cell proliferation in AML cells. GANT61, an inhibitor of GLI1, emerges as a promising candidate in AML treatment.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
There is an urgent necessity to devise efficient tactics to tackle the inevitable development of resistance to osimertinib, which is a third-generation epidermal growth factor receptor (EGFR) inhibitor used in treating EGFR-mutant nonsmall cell lung cancer (NSCLC). This study demonstrates that combining itraconazole with osimertinib synergistically reduces the proliferation and migration, enhances the apoptosis of osimertinib-resistant cells, and effectively inhibits the growth of osimertinib-resistant tumors. Mechanistically, itraconazole combined with osimertinib promotes the proteasomal degradation of sonic hedgehog (SHH), resulting in inactivation of the SHH/Dual-specificity phosphatase 13B (DUSP13B)/p-STAT3 and Hedgehog pathways, suppressing Myc proto-oncogene protein (c-Myc).
View Article and Find Full Text PDFCureus
November 2024
Pathology, University of Pittsburgh Medical Center, Pittsburgh, USA.
Glioma-associated oncogene (-altered mesenchymal tumors are a newly described entity of neoplasms with very few case reports published in the literature. -altered neoplasms have a moderate degree of variability as they are seen in a broad range of anatomic sites and amongst people of all ages. A common feature that most -altered tumors share is the histologic makeup of monomorphic ovoid cells organized in distinct nests and an arborizing vascular blood supply.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Department of Human Anatomy, Co-Innovation Center of Neuroregeneration, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China.
JOR Spine
December 2024
Department of Orthopedics, Xuanwu Hospital Capital Medical University Beijing China.
Background: Lumbar disc degeneration (LDD) is a ubiquitous finding in low back pain. Many different etiology factors may explain the LDD process, such as bone morphogenetic proteins (BMPs), DNA methylation, and gut microbiota. Until recently the mechanisms underlying the LDD process have been elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!