Glassy carbon electrodes modified with composites of starburst-PAMAM dendrimers containing metal nanoparticles for amperometric detection of dopamine in urine.

Talanta

Electrochemistry Department, Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Querétaro, Mexico.

Published: June 2007

Composites of hydroxyl-terminated PAMAM dendrimers, generation 4.0 (64 peripheral OH groups) containing either Ir, Pt or Rh nanoparticles were synthesized and characterized in solution. Each one of these composites was then immobilized on a glassy carbon electrode (GC) and incorporated as an amperometric detector for dopamine in a high-performance liquid chromatograph (HPLC). Comparison of the analytical performance of the novel electrochemical detectors with a typical UV-vis optical detector for dopamine revealed that the sensitivity of the GC electrode modified with dendrimer-Rh composite is comparable to that of the spectroscopic detector, with a detection limit of 0.15muM, and is linear up to at least 1.0mM (R(2)=0.998). Furthermore, it was found that the electroanalytical approach suffers minimal matrix effects that arise in the analysis of dopamine in samples of urine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2007.02.017DOI Listing

Publication Analysis

Top Keywords

glassy carbon
8
detector dopamine
8
carbon electrodes
4
electrodes modified
4
modified composites
4
composites starburst-pamam
4
starburst-pamam dendrimers
4
dendrimers metal
4
metal nanoparticles
4
nanoparticles amperometric
4

Similar Publications

Testing mixed metal bimetallic, and monometallic, cryptates for electrocatalytic hydrogen evolution.

Dalton Trans

January 2025

Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.

Appropriately designed catalysts help to minimise the energy required to convert the energy-poor feedstock HO into energy-rich molecular H. Herein, two families of pyridazine-based cryptates, mononuclear [MLi](BF) and mixed metal dinuclear [MCuLi](BF) (M = Fe, Co, Cu or Zn; Li is the Schiff base cryptand made by 2 : 3 condensation of tris(2-aminoethyl)amine and 3,6-diformylpyridazine), are investigated as potential electrocatalysts for the hydrogen evolution reaction (HER) in MeCN with acetic acid as the proton source. The synthesis and structures of a new mixed metal cryptate, [ZnCuLi](BF), and the tetrafluoroborate analogue of the previously reported perchlorate salt of the mono-zinc cryptate, [ZnLi](BF)·0.

View Article and Find Full Text PDF

Herein, we present an efficient approach for developing electrochemical aptasensing interfaces, by "click" postfunctionalization of phenylethynyl-grafted glassy carbon substrates with mixed monolayers containing biorecognition elements and phosphorylcholine zwitterionic groups. Typically, controlling the composition of multicomponent surface layers by grafting from a mixture of aryldiazonium salts is challenging due to differences in their chemical reactivity. Our approach circumvents this issue by employing the electrochemical reduction of a single aryldiazonium salt containing a silyl-protected alkyne group followed by deprotection, to create phenylethynyl monolayers which can subsequently accommodate the concurrent immobilization of bioreceptors and zwitterionic groups through "click" postfunctionalization.

View Article and Find Full Text PDF

This paper describes the first use of conductive metal-organic frameworks as the active material in the electrochemical detection of nitric oxide in aqueous solution. Four hexahydroxytriphenylene (HHTP)-based MOFs linked with first-row transition metal nodes (M = Co, Ni, Cu, Zn) were compared as thin-film working electrodes for promoting oxidation of NO using voltammetric and amperometric techniques. Cu- and Ni-linked MOF analogs provided signal enhancement of 5- to 7-fold over a control glassy carbon electrode (SA = 6.

View Article and Find Full Text PDF

In the present study, a novel voltammetric sensor based on a boron-doped copper oxide/graphene (B-CuO-Gr) nanocomposite and molecularly imprinted polymer (MIP) was developed for the detection of paclobutrazol (PAC) in apple and orange juice samples. The B-CuO-Gr nanocomposite was prepared using sol-gel and calcination methods. After modifying glassy carbon electrodes with the B-CuO-Gr nanocomposite, PAC-imprinted electrodes were prepared in the presence of 100.

View Article and Find Full Text PDF

A novel antimonotungstate (AT)-based heterometallic framework {[Er(HO)][Fe(Hpdc)(B-β-SbWO)]}·50HO (, Hpdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-Fe-substituted Krebs-type [Fe(Hpdc)(B-β-SbWO)] subunit and two [Er(HO)] cations. This subunit can be regarded as a product of carboxylic oxygen atoms of Hpdc ligands replacing active water ligands in the [Fe(HO)(B-β-SbWO)] species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!