Study on electrochemical behavior of tryptophan at a glassy carbon electrode modified with multi-walled carbon nanotubes embedded cerium hexacyanoferrate.

Talanta

College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China; Anhui Key Laboratory of Functional Molecular Solids, Wuhu 241000, China.

Published: June 2007

Electrochemical behavior of cerium hexacyanoferrate (CeHCF) incorporated on multi-walled carbon nanotubes (MWNTs) modified GC electrode is investigated by scanning electron microscopy (SEM) and electrochemical techniques. The CeHCF/MWNT/GC electrode showed potent electrocatalytic activity toward the electrochemical oxidation of tryptophan in phosphate buffer solution (pH 7.0) with a diminution of the overpotential of 240mV. The anodic peak currents increased linearly with the concentration of tryptophan in the range of 2.0x10(-7) to 1.0x10(-4)M with a detection limit of 2.0x10(-8)M (at a S/N=3). And the determination of tryptophan in pharmaceutical samples was satisfactory.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2007.01.039DOI Listing

Publication Analysis

Top Keywords

electrochemical behavior
8
multi-walled carbon
8
carbon nanotubes
8
cerium hexacyanoferrate
8
study electrochemical
4
tryptophan
4
behavior tryptophan
4
tryptophan glassy
4
glassy carbon
4
carbon electrode
4

Similar Publications

Solvation layer effects on lithium migration in localized High-Concentration Electrolytes: Analyzing the diverse antisolvent Contributions.

J Colloid Interface Sci

December 2024

Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, PR China. Electronic address:

Localized high-concentration electrolytes (LHCEs) offer a new methodology to improve the functionality of conventional electrolytes. Understanding the impact of antisolvents on bulk electrolytes is critical to the construction of sophisticated LHCEs. However, the mechanism of how antisolvent modulates the electrochemical reactivity of the solvation structure in LHCEs remains unclear.

View Article and Find Full Text PDF

A microbial fuel cell (MFC) is a modern, environmentally friendly, and cost-effective energy conversion technology that utilizes renewable organic waste as fuel, converting stored chemical energy into usable bioelectricity in the presence of a biocatalyst. Despite advancements in MFC technology, several challenges remain in optimizing power production efficiency, particularly regarding anode materials and modifications. In this study, low-cost biosynthesized iron oxide nanoparticles (FeO NPs) were coated with a polyaniline (PANI) conducting matrix to synthesize hybrid FeO/PANI binary nanocomposites (NCs) as modified MFC anodes via an in-situ polymerization process.

View Article and Find Full Text PDF

In the present work, nitrogen-doped carbon was synthesized starting from a chitosan/urea mixture and immobilized at the surface of a bare glassy carbon electrode to detect Cd(II) ions using differential pulse-anodic stripping voltammetry method (DP-ASV). The synthesized nitrogen-doped carbon showed a significant potential for determining Cd(II) ions. Doping carbon with nitrogen atoms gives a structure with increased valence band energy, leading to acceleration of the electron transfer by creating an interaction of nitrogen's free electrons with Cd(II), which subsequently increases the peak current value.

View Article and Find Full Text PDF

The control and industrial application of chaotic systems is a major obstacle limiting the diffusion of chaos theory. In this study, we proposed a novel, universally applicable methodology for constructing an offset boosting function for chaotic systems. By integrating this approach with traditional techniques, a four-dimensional chaotic system with two-dimensional offset boosting was developed and successfully implemented by a real chaotic circuit for manganese metal electrolysis, replacing conventional DC.

View Article and Find Full Text PDF

Liver cancer is globally the most frequent fatal malignancy, and its identification is critical for making clinical decisions about treatment options. Pathological diagnostics and contemporary imaging technologies provide insufficient information for tumor identification. Hydrogen peroxide (HO), an emerging biomarker is a powerful oxidant found in the tumor microenvironment, and stimulates the invasion, proliferation, and metastasis of liver cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!