Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and hydrogen exchange combined with enzymatic digestion for the structural characterization of antimalaric Spf66 peptide.

Talanta

Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de La Laguna, 38200, La Laguna, Tenerife, Spain.

Published: May 2007

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used in hydrogen exchange studies, exchanging deuteron (H/D) or proton (D/H), to determine the structure and conformational changes of antimalarial Spf66 synthetic peptide in its monomeric and dimeric forms. The accuracy of both analytical methods was assessed along with their suitability to study structural aspects. The results via these two approaches were in agreement, indicating that the dimer presents segments of secondary structure. In this last case, the combination of both methods with enzymatic digestion with pepsin was used in their identification. Although 100% coverage of Spf66 dimer was not observed, the higher levels of deuteration were observed for fragments located in the chain terminal where the structure may be more flexible, while the fragments near the disulfide bonds, which is, in theory, the more rigid region of the molecule, were not detected. This strategy is significantly time saving and allows rapid screening and help to characterize a protein, especially, when no prior structural information is available. However, a single spectrum is not certainly sufficient to obtain structural data; it is just an experimental limitation. Also, changes in peptide structure after storage at different temperatures and time were observed, which lead to a loss in the secondary structure as determined by circular dicroism measurements and an increase in aggregation products, since the trimer and tetramer species were detected by mass spectrometry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2007.01.012DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
12
matrix-assisted laser
8
laser desorption/ionization
8
desorption/ionization time-of-flight
8
time-of-flight mass
8
spectrometry hydrogen
8
hydrogen exchange
8
enzymatic digestion
8
secondary structure
8
structure
5

Similar Publications

Applications of mass spectrometry imaging in botanical research.

Adv Biotechnol (Singap)

February 2024

State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.

Mass spectrometry imaging (MSI) serves as a valuable tool enabling researchers to scrutinize various compounds, peptides, and proteins within a sample, providing detailed insights at both elemental and molecular levels. This innovative technology transforms information obtained from a mass spectrometer- encompassing ionic strength, mass-to-charge ratio, and ionized molecule coordinates-within a defined region into a pixel-based model. Consequently, it reconstructs the spatial distribution of ions, allowing for a comprehensive understanding of molecular landscapes.

View Article and Find Full Text PDF

Exploring the plant lipidome: techniques, challenges, and prospects.

Adv Biotechnol (Singap)

March 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.

Plant lipids are a diverse group of biomolecules that play essential roles in plant architecture, physiology, and signaling. To advance our understanding of plant biology and facilitate innovations in plant-based product development, we must have precise methods for the comprehensive analysis of plant lipids. Here, we present a comprehensive overview of current research investigating plant lipids, including their structures, metabolism, and functions.

View Article and Find Full Text PDF

Partially hydrolyzed guar gum alleviates neurological deficits and gastrointestinal dysfunction in mice with traumatic brain injury.

Neurosurg Rev

January 2025

Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Zhou shan hui shui Community,199 Hailing South Road, Taizhou, Jiangsu Province, 225300, China.

Traumatic brain injury (TBI)-associated neuroinflammation and neurotoxicity can induce gastrointestinal dysfunction through the brain-gut axis. Partially hydrolyzed guar gum (PHGG) was demonstrated to exert beneficial health effects by altering gut microbiota and short-chain fatty acids (SCFAs) production. Our study aimed to explore the effects of PHGG on gastrointestinal dysfunction in TBI mouse models.

View Article and Find Full Text PDF

Sample pretreatment for mass spectrometry (MS)-based metabolomics and lipidomics is normally conducted independently with two sample aliquots and separate matrix cleanup procedures, making the two-step process sample-intensive and time-consuming. Herein, we introduce a high-throughput pretreatment workflow for integrated nontargeted metabolomics and lipidomics leveraging the enhanced matrix removal (EMR)-lipid microelution 96-well plates. The EMR-lipid technique was innovatively employed to effectively separate and isolate non-lipid small metabolites and lipids in sequence using significantly reduced sample amounts and organic solvents.

View Article and Find Full Text PDF

Oxymetholone and methasterone are anabolic androgenic steroids prohibited by the World Anti-Doping Agency (WADA) for both in-competition and out-of-competition use. Detecting metabolites of exogenous steroids is crucial for establishing doping violations, making the study of these metabolites essential in antidoping efforts. This study investigated the urinary metabolic profiles of oxymetholone and methasterone using gas chromatography-orbitrap high-resolution mass spectrometry (GC-Orbitrap-HRMS) in nanogram level by utilizing a novel multiplex nontargeted framework protocol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!