Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode.

Talanta

Advanced Analytical Science and Nanomaterials Lab, Department of Chemistry Education, Kyungpook National University, Daegu 702-701, South Korea; Nano Practical Application Center, Daegu 704-230, South Korea; Department of Industrial Chemistry, Alagappa University, Karaikudi-630 003, India.

Published: March 2007

A modified electrode is fabricated by embedding gold nanoparticles into a layer of electroactive polymer, poly(4-aminothiophenol) (PAT) on the surface of glassy carbon (GC) electrode. Cyclic voltammetry (CV) is performed to deposit PAT and concomitantly deposit Au nanoparticles. Field emission transmission electron microscopic image of the modified electrode, PAT-Au(nano)-ME, indicates the presence of uniformly distributed Au nanoparticles having the sizes of 8-10nm. Electrochemical behavior of the PAT-Au(nano)-ME towards detection of ascorbic acid (AA) and dopamine (DA) is studied using CV. Electrocatalytic determination of DA in the presence of fixed concentration of AA and vice versa, are studied using differential pulse voltammetry (DPV). PAT-Au(nano)-ME exhibits two well defined anodic peaks at the potential of 75 and 400mV for the oxidation of AA and DA, respectively with a potential difference of 325mV. Further, the simultaneous determination of AA and DA is studied by varying the concentration of AA and DA. PAT-Au(nano)-ME exhibits selectivity and sensitivity for the simultaneous determination of AA and DA without fouling by the oxidation products of AA or DA. PAT and Au nanoparticles provide synergic influence on the accurate electrochemical determination of AA or DA from a mixture having any one of the component (AA or DA) in excess. The practical analytical utilities of the PAT-Au(nano)-ME are demonstrated by the determination of DA and AA in dopamine hydrochloride injection and human blood serum samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2006.08.026DOI Listing

Publication Analysis

Top Keywords

modified electrode
12
electrochemical determination
8
determination dopamine
8
ascorbic acid
8
gold nanoparticles
8
pat-aunano-me exhibits
8
simultaneous determination
8
nanoparticles
5
pat-aunano-me
5
determination
5

Similar Publications

Enhancing Carbon Monoxide Tolerance in Low-Temperature PEM Fuel Cells through Carbon Nitride Surface Modification.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Low-temperature proton exchange membrane fuel cells (PEMFCs) reuqire highly pure hydrogen gas due to their extreme sensitivity to carbon monoxide (CO) contamination, which poses a challenge for using cost-effective reformed hydrogen sources. To address this issue, we have developed a surface modification strategy by applying a 0.5-0.

View Article and Find Full Text PDF

For the first time, a TiCT-MXene and poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT: PSS) composite-modified electrode has been developed for electrochemical detection of the bilirubin (BR) by molecularly imprinted ortho-phenylenediamine (o-PD). BR is a biomarker for liver-related diseases. High levels of BR imply liver dysfunction; hence, its exact and rapid measurement is indispensable to its immediate diagnosis and treatment.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, DISTALZ, Lille, France.

Background: BIN1 is a major susceptibility gene for AD and BIN1 protein interacts with Tau. However, the contribution of BIN1 and its isoforms to AD pathogenesis remains unclear. We recently described that human BIN1 isoform1 (BIN1iso1) induces an accumulation of early endosome vesicles leading to neurodegeneration in Drosophila retina and that the early endosome size regulation was conserved in human induced neurons.

View Article and Find Full Text PDF

In this study, a molecularly imprinted electrochemical sensor (MIECS) was constructed based on the combination of graphene quantum dots-gold nanoparticles (GQDs-AuNPs), molecular imprinting polymer (MIP), and electrochemical technology for the ultra-sensitive detection of 17β-estradiol (E). GQDs-AuNPs were synthesized and modified on the surface of glassy carbon electrodes (GCE). Safranine T was used as the functional monomer and E was the template molecule for self-assembly and electropolymerization, thus generating an MIP film on the electrode surface.

View Article and Find Full Text PDF

A microbial fuel cell (MFC) is a modern, environmentally friendly, and cost-effective energy conversion technology that utilizes renewable organic waste as fuel, converting stored chemical energy into usable bioelectricity in the presence of a biocatalyst. Despite advancements in MFC technology, several challenges remain in optimizing power production efficiency, particularly regarding anode materials and modifications. In this study, low-cost biosynthesized iron oxide nanoparticles (FeO NPs) were coated with a polyaniline (PANI) conducting matrix to synthesize hybrid FeO/PANI binary nanocomposites (NCs) as modified MFC anodes via an in-situ polymerization process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!