This work reports on the analytical performance of composites obtained by dispersing copper microparticles and multi-wall carbon nanotubes within a mineral oil binder (CNTPE-Cu) for the determination of amino acids and albumin. The strong complexing activity of amino acids towards copper makes possible an important improvement in the sensitivity for the determination of amino acids and albumin. This new electrode permits the highly sensitive amperometric detection of amino acids, even the non-electroactive ones, at very low potentials (0.000V) and physiological pH (phosphate buffer solution pH 7.40). The response of the electrode is highly dependent on the amount of copper, demonstrating the crucial role of the metal in the analytical performance of the sensor. The best analytical performance is obtained for the electrode containing 6.0% (w/w) copper. The resulting sensor shows a fast response (7s) and a sensitivity that depends on the nature of the amino acid. The electrode surface demonstrates an excellent resistance to surface fouling, with R.S.D. of 4% for the sensitivities of 10 successive calibration plots. Albumin is determined with CNTPE-Cu using a protocol based on the accumulation of the protein for 10min at -0.100V, followed by the square-wave voltammetric analysis. The quantification of albumin concentration in lyophilized control serum gives excellent agreement with the classical spectrophotometric methodology and with the value informed for the supplier.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2006.06.041 | DOI Listing |
J Org Chem
January 2025
Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
β-Addition products are common in conjugate addition reactions consisting of α,β-unsaturated carbonyl compounds. Here, we are reporting an uncommon α-addition product as a major product in the thioacetic acid conjugate addition reaction on a peptide consisting of ()-α,β-unsaturated γ-amino acids. In addition, we observed highly diastereoselective β-addition products from the thiophenol and thioethanol conjugate addition reaction on peptides.
View Article and Find Full Text PDFRev Med Suisse
January 2025
Service de néphrologie, Département de médecine, Hôpitaux universitaires de Genève, Genève 14.
Certain molecules, such as GLP-1 agonists and endothelin antagonists, possess nephroprotective properties. When treating IgA nephropathy, endothelin antagonists and sibeprenlimab have shown effectiveness in slowing the progression of chronic kidney isease. Additionally, the infusion of amino acids can reduce the incidence of mild acute kidney injury following cardiac surgery.
View Article and Find Full Text PDFFront Nutr
January 2025
School of Sports Training, Chengdu Sport University, Chengdu, China.
Background: Branched-chain amino acids (BCAAs) are widely used as sports nutrition supplements. However, their impact on the rate of force development (RFD), an indicator of explosive muscle strength, has not yet been validated. This study aimed to assess the impact of BCAA supplementation on the RFD in college basketball players during simulated games.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Center for Biomolecular and Cellular Structure, Institute for Basic Science, Daejeon, Republic of Korea.
Huntington's disease (HD) is primarily caused by the aberrant aggregation of the N-terminal exon 1 fragment of mutant huntingtin protein (mHttex1) with expanded polyglutamine (polyQ) repeats in neurons. The first 17 amino acids of the N-terminus of Httex1 (N17 domain) immediately preceding the polyQ repeat domain are evolutionarily conserved across vertebrates and play multifaceted roles in the pathogenesis of HD. Due to its amphipathic helical properties, the N17 domain, both alone and when membrane-associated, promotes mHttEx1 aggregation.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
Bariatric surgery is an effective treatment for type 2 Diabetes Mellitus (T2DM), yet the precise mechanisms underlying its effectiveness remain incompletely understood. While previous research has emphasized the role of rearrangement of the gastrointestinal anatomy, gaps persist regarding the specific impact on the gut microbiota and barriers within the biliopancreatic, alimentary, and common limbs. This study aimed to investigate the effects of duodenal-jejunal bypass (DJB) surgery on obese T2DM mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!