Equilibrium constants (K(MLA)(0)/mol(-1)dm(3)) for the ion-pair formation of a complex ion NaL(+) with ReO(4)(-) in water were determined potentiometrically at 25 degrees C and the ionic strength (I) of 0mol dm(-3) using a Na(+)-selective electrode. Here, crown ethers, L, were 15-crown-5 ether (15C5), benzo-15C5, 18-crown-6 ether (18C6) and benzo-18C6. Also, NaReO(4) was extracted by the L into 1,2-dichloroethane and then extraction constants (K(ex)/mol(-2)dm(6)) for the species, NaLReO(4), were determined at 25 degrees C by AAS. These K(ex) values were resolved into four component equilibrium constants containing K(MLA) calculated at given I values. Based on these data, extraction-abilities of the L against the perrhenate were discussed in comparison with those of sodium picrate-L systems reported previously.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2006.05.010DOI Listing

Publication Analysis

Top Keywords

ion-pair formation
8
equilibrium constants
8
solvent extraction
4
extraction sodium
4
sodium perrhenate
4
perrhenate 3m-crown-m
4
3m-crown-m ethers
4
ethers m=5
4
m=5 mono-benzo-derivatives
4
mono-benzo-derivatives 12-dichloroethane
4

Similar Publications

Ion Pair Chromatography for Endogenous Metabolite LC-MS Analysis in Tissue Samples Following HGH Resolution Untargeted Acquisition.

Methods Mol Biol

January 2025

Bioscience, Research and Early Development, Oncology, AstraZeneca, Cambridge, Cambridgeshire, UK.

A protocol for the preparation of tissue extracts for the targeted analysis ca. 150 polar metabolites, including those involved in central carbon metabolism, is described, using a reversed phase ion pair U(H)PLC-MS method. Data collection enabled in high-resolution mass spectrometry detection provides highly specific and sensitive acquisition of metabolic intermediates with wide range physicochemical properties and pathway coverage.

View Article and Find Full Text PDF

Designing molecular receptors that bind anions in water is a significant challenge, and an even greater difficulty lies in using these receptors to remove anions from water without resorting to the hazardous liquid-liquid extraction approach. We here demonstrate an effective and synthetically simple strategy toward these goals by exploiting ion-pair assembly of macrocycles. Our anion binding ensemble consists of an octa-chloro tetra-urea macrocyclic anion receptor (ClTU), which forms water-dispersible aggregates, and a tetra-cationic fluorescent dye 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP4), which provides Coulombic stabilization and fluorescence reporting of anion binding in an ion-pair assembly.

View Article and Find Full Text PDF

Context: There has been growing interest in amino acid ionic liquids because of their low-cost synthesis and superior biodegradability and biocompatibility compared to traditional ionic liquids. In this study, we have investigated the structure and dynamics of three ionic liquids consisting of N-butyl N-methyl piperidinium [Pip] cation with amino acid (lysine [Lys], histidine [His], and arginine [Arg]) anions. The radial distribution functions, the spatial distribution functions, and the coordination numbers have been used to analyze the structure in the bulk phase.

View Article and Find Full Text PDF

A cooperative model for metallocene catalyst activation by methylaluminoxane.

Dalton Trans

January 2025

Department of Chemistry, University of Eastern Finland, Joensuu Campus, Yliopistokatu 7, FI-80100, Joensuu, Finland.

Activation of rac-MeSi(η-Ind)ZrMe (SBIZrMe) and sheet models for MAO, (MeAlO)(MeAl) (6,4), (MeAlO)(MeAl) (7,5), and (MeAlO)(MeAl) (26,9) was studied DFT. These activators can reversibly form an outer-sphere ion-pair (OSIP) [SBIZrMeAlMe] [(MeAlO)(MeAl)Me] 3 ([,] = [7,4]and [26,8]) or a contact ion-pair (CIP) SBIZrMe-μ-Me-6,4 (2b) from SBIZrMe. Dissociation of MeAl from 3 to form CIP SBIZrMe-μ-Me-, (2) is generally unfavourable but reversible in toluene continuum.

View Article and Find Full Text PDF

Halide-free ion pair organocatalyst from biobased α-hydroxy acid for cycloaddition of CO to epoxide.

Org Biomol Chem

January 2025

State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.

The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!