Physiological processes are often activated by reactive oxygen species (ROS), such as the superoxide anion (O(2)(*)(-)) and nitric oxide (NO*) produced by cells. We studied the interactions between NO* and O(2)(*)(-), and their generators (NO* synthase, NOS, and a still elusive oxidase), in human spermatozoa during capacitation (transformations needed for acquisition of fertility). Albumin, fetal cord serum ultrafiltrate, and L-arginine triggered capacitation and ROS generation (NO* and O(2)(*)(-)) and superoxide dismutase (SOD) and NOS inhibitors prevented all these effects. Surprisingly, capacitation due to exogenous NO* (or O(2)(*)(-)) was also blocked by SOD (or NOS inhibitors). Probes used were proven specific and innocuous on spermatozoa. Whereas O(2)(*)(-) was needed only for 30 min, the continuous NO* generation was essential for hours. Capacitation caused a time-dependent increase in protein tyrosine nitration that was prevented by SOD and NOS inhibitors, suggesting that O(2)(*)(-) and NO*. also act via the formation of ONOO(-). Spermatozoa treated with NO* (or O(2)(*)(-)) initiated a dose-dependent O(2)(*)(-) (or NO*) production, providing, for the first time in cells, a strong evidence for a two-sided ROS-induced ROS generation. Data presented show a close interaction between NO* and O(2)(*)(-) and their generators during sperm capacitation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2008.11.004DOI Listing

Publication Analysis

Top Keywords

no* o2*-
20
sod inhibitors
12
no*
10
o2*-
9
reactive oxygen
8
sperm capacitation
8
o2*- generators
8
ros generation
8
o2*- no*
8
capacitation
6

Similar Publications

Nitrite (NO) interacts with myoglobin (Mb) and hemoglobin (Hb) behaving as a ligand of both the ferrous (i.e., Mb(II) and Hb(II)) and ferric (i.

View Article and Find Full Text PDF

Palladium(II) complexes containing andrographolide appended N,O heterocyclic chelators: Investigation of anti-oxidant, anti-cancer and apoptotic activities.

J Inorg Biochem

January 2025

Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, India; Centre for Material Chemistry, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641 021, India. Electronic address:

A series of new Pd(II) complexes were synthesized from the reaction of andrographolide appended hydrazide derivatives with potassium tetrachloropalladate K[PdCl]. The formation of the complexes was confirmed through structural assessments conducted using various spectroscopic techniques. From the spectral studies we confirmed that the ligands coordinated to Pd(II) ion via amine nitrogen and enone oxygen.

View Article and Find Full Text PDF

The study of the effect of the mechanism of urea addition to sewage sludge and sawdust-composting substrates on methane production is still limited. In the present study, the systematic investigation of the effect of urea addition (0.18, 0.

View Article and Find Full Text PDF

A monocationic dicopper(I,I) nitrite complex [Cu(μ-κ:κ-ON)DPFN][NTf] () (DPFN = 2,7-bis(fluoro-di(2-pyridyl)methyl)-1,8-naphthyridine, NTf = N(SOCF)), was synthesized by treatment of a dicopper acetonitrile complex, [Cu(μ-MeCN)DPFN][NTf] (), with tetrabutylammonium nitrite ([BuN][NO]). DFT calculations indicate that is one of three linkage isomers that are close in energy and presumably accessible in solution. Reaction of the μ-κ:κ-ON complex with -TolSH produces nitrous acid (HONO) and the corresponding dicopper thiolate species via an acid-base exchange reaction.

View Article and Find Full Text PDF

Aerobic oxidation of a dimethylplatinum(II) complex featuring 1,1-di(2-pyridyl)ethanol as a supporting ligand leads to the formation of two unexpected Pt complexes (in ∼1:1 ratio), neither of which results from direct oxidation typical for Pt centers supported by popular κ-(,) ligands. While one product features an isomerized Pt center stabilized by the κ-(,,) ligand coordination mode, surprisingly, the other product results from intramolecular activation of the ligand methyl fragment. Mechanistic studies, reactivity of model complexes, and DFT calculations reveal that the critical proton-responsive nature of the ligand allows formation of intermediates that result in a concerted metalation deprotonation (CMD)-like C-H activation at Pt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!