Human umbilical cord blood (HUCB) is a valuable source for cell therapy since it confers neuroprotection in stroke animal models. However, the responsible sub-populations remain to be established and the mechanisms involved are unknown. To explore HUCB neuroprotective properties in a PC12 cell-based ischemic neuronal model, we used an HUCB mononuclear-enriched population of collagen-adherent cells, which can be differentiated in vitro into a neuronal phenotype (HUCBNP). Upon co-culture with insulted-PC12 cells, HUCBNP conferred approximately 30% neuroprotection, as evaluated by decreased lactate dehydrogenase and caspase-3 activities. HUCBNP decreased by 95% the level of free radicals in the insulted-PC12 cells, in correlation with the appearance of antioxidants, as measured by changes in the oxidation-reduction potential of the medium using cyclic-voltammetry. An increased level of nerve growth factor (NGF), vascular endothelial growth factor and basic fibroblast growth factor in the co-culture medium was temporally correlated with a -medium neuroprotection effect, which was partially abolished by heat denaturation. HUCBNP-induced neuroprotection was correlated with changes in gene expression of these neurotrophic factors, while blocked by K252a, an antagonist of the TrkA/NGF receptor. These findings indicate that HUCBNP-induced neuroprotection involves antioxidant(s) and neurotrophic factors, which, by paracrine and/or autocrine interactions between the insulted-PC12 and the HUCBNP cells, conferred neuroprotection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2008.11.006DOI Listing

Publication Analysis

Top Keywords

growth factor
12
cord blood
8
involves antioxidants
8
antioxidants neurotrophic
8
insulted-pc12 cells
8
hucbnp-induced neuroprotection
8
neurotrophic factors
8
neuroprotection
7
neuroprotection cord
4
blood neural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!