The statistical entropy (SE) function has been developed as a methodology to rapidly benchmark he effectiveness of different waste management systems by determining the level to which specific substances are either concentrated or diluted. Past usage of SE has been confined to metals. In this paper, this method is extended to account for carbon--a key substance of interest Accounting for carbon is complicated by the fact that reactions involving this substance are complex and their products are numerous. Through experiments on carbon-containing emissions from styrene-butadiene rubber (SBR), natural rubber (polyisoprene, IR), and waste tires we demonstrate that a knowledge of carbon-containing species accounting for 90% (by mass) of gaseous emissions is sufficient. Next, we develop an extended SE calculation methodology and apply it to compare carbon flows through two different systems for municipal solid waste (MSW) management (landfills) and waste-to-energy (WTE) facilities. Our results indicate that while landfills perform better on a cursory analysis, they are roughly equal to WTE when carbon flows related to energy generation are accounted for, and underperform by a factor of 3 when considering global warming potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es8007497 | DOI Listing |
Bull Environ Contam Toxicol
January 2025
Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
Ciprofloxacin (CIP) and oxytetracycline (OTC) are commonly detected antibiotic species in breeding wastewater, and microalgae-based antibiotic treatment technology is an environmentally friendly and cost-effective method for its removal. This study evaluated the effects of CIP and OTC on Scenedesmus sp. in the breeding wastewater tailwater and the removal mechanisms of antibiotics.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, China.
The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.
View Article and Find Full Text PDFSci Rep
January 2025
Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.
Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada. Electronic address:
Waste printed circuit boards (WPCBs) are a significant component of electronic waste (e-waste) and are among the fastest-generating waste flows. The potentially negative impacts caused by e-waste on the environment and human health pose an increasingly apparent threat to people's everyday lives and well-being. The nonmetallic fraction (predominantly carbon) of WPCBs is characterized by heavy weight, low resource value, and complex composition, and these characteristics significantly restrict the recycling of the WPCBs to achieve a circular economy.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy.
The materials removed in the oil separation units of wastewater treatment plants can be referred to as fat, oil and grease (FOG) waste. FOG waste accumulation in treatment plants can cause clogging of pipes, production of excessive scums and foams, and negatively affect air/liquid oxygen transfer. While conventional disposal routes of this material can be limited by its water and organic content, FOG can represent a source of bio-energy other than bio-diesel production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!