Prescribed burning is a large aerosol source in the southeastern United States. Its air quality impact is investigated using 3-D model simulations and analysis of ground and satellite observations. Fire emissions for 2002 are calculated based on a recently developed VISTAS emission inventory. March was selected for the investigation because it is the most active prescribed fire month. Inclusion of fire emissions significantly improved model performance. Model results show that prescribed fire emissions lead to approximately 50% enhancements of mean OC and EC concentrations in the Southeast and a daily increase of PM2.5 up to 25 microg m(-3), indicating that fire emissions can lead to PM2.5 nonattainment in affected regions. Surface enhancements of CO up to 200 ppbv are found. Fire count measurements from the moderate resolution imaging spectroradiometer (MODIS) onboard the NASA Terra satellite show large springtime burning in most states, which is consistent with the emission inventory. These measurements also indicate that the inventory may underestimate fire emissions in the summer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es800363d | DOI Listing |
Environ Monit Assess
January 2025
Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, Delhi, 110078, India.
This study investigates the spatio-temporal distribution of formaldehyde (HCHO) over the mainland Southeast Asian region (including Northeast India) from 2019 to 2022 using TROPOMI satellite data. HCHO is a key atmospheric trace gas which is influenced by both natural processes and anthropogenic activities. We analyze HCHO levels in relation to atmospheric species including carbon monoxide (CO), nitrogen dioxide (NO), and environmental factors such as land surface temperature (LST), precipitation (PPT), fire radiative power (FRP), and enhanced vegetation index (EVI).
View Article and Find Full Text PDFEnviron Res
January 2025
China Academy of Safety Science and Technology, Beijing 100012, China. Electronic address:
Spontaneous coal fires are a significant source of greenhouse gas emissions, contributing to global warming. However, the lack of reliable estimation methods and research has obscured the full environmental impact of these emissions. This paper presents a novel quantification method for fugitive carbon emissions from spontaneous coal combustion.
View Article and Find Full Text PDFNat Commun
January 2025
Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
Monitoring methane (CH) emissions from terrestrial ecosystems is essential for assessing the relative contributions of natural and anthropogenic factors leading to climate change and shaping global climate goals. Fires are a significant source of atmospheric CH, with the increasing frequency of megafires amplifying their impact. Global fire emissions exhibit large spatiotemporal variations, making the magnitude and dynamics difficult to characterize accurately.
View Article and Find Full Text PDFMethodsX
December 2024
Natural Resources Canada, Canadian Forest Service, 506 Burnside Road West, Victoria, BC, V8Z1M5, Canada.
In light of the recent unprecedented wildfires in Canada and the potential for increasing burned areas in the future, there is a need to explore post-fire salvage harvest and restoration and the implications for greenhouse gas (GHG) emissions. Salvage logging and replanting initiatives offer a potential solution by regrowing forests more quickly while meeting societal demands for wood and bioenergy. This study presents a comprehensive modeling framework to estimate post-fire salvage biomass and net GHG emissions relative to a 'do-nothing' baseline for all of Canada's harvest-eligible forests.
View Article and Find Full Text PDFJ Agromedicine
January 2025
Permanent Representation of Spain to the EU, Brussels, Belgium.
Objective: The fisheries sector is essential to the economies of developing countries, but it is a contributor to greenhouse gas emissions. Although emissions can be substantially reduced through energy efficiency measures, compliance with the Paris Agreement of 2015 requires further action through national frameworks for the decarbonization of fishing vessels. The objective of this paper is to explain the impact in greenhouse gas emissions from fishing vessels, discuss the possible regulatory indexes that could be made applicable to fishing vessels and how these ships can transition to alternative and low carbon fuels, identifying the main challenges in view of accident analysis and inspections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!