Brain injuries caused by stroke, trauma, or tumor often affect the visual system that leads to perceptual deficits. After intense visual stimulation of the damaged visual field or its border region, recovery may be achieved in some sectors of the visual field, but the extent of restoration is highly variable between patients and is not homogeneously distributed in the visual field. We now assess the visual field loss and its dynamics by perimetry, a standard diagnostic procedure in medicine, to measure the detectability of visual stimuli in the visual field. Subsequently, a treatment outcome prediction model (TOPM) has been developed, using features that were extracted from the baseline perimetric charts. The features in the TOPM were either empirically associated with treatment outcomes or were based on findings in the vision-restoration literature. Among other classifiers, the self-organizing map (SOM) was selected because it implicitly supports data exploration. Using a data pool of 52 patients with visual field defects, the TOPM was constructed to predict areas of improvement in the visual field topography. To evaluate the predictive validity of the TOPM, we propose a method to calculate the receiver operating characteristic graph, whereby the SOM is used in combination with a nearest neighbor classifier. We discuss issues relevant for medical TOPMs, such as appropriateness to the patient sample, clinical relevance, and incorporation of a priori knowledge.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2008.2009995DOI Listing

Publication Analysis

Top Keywords

visual field
32
visual
11
treatment outcome
8
outcome prediction
8
prediction model
8
field
8
model visual
4
field recovery
4
recovery self-organizing
4
self-organizing maps
4

Similar Publications

Aiming at the severe occlusion problem and the tiny-scale object problem in the multi-fitting detection task, the Scene Knowledge Integrating Network (SKIN), including the scene filter module (SFM) and scene structure information module (SSIM) is proposed. Firstly, the particularity of the scene in the multi-fitting detection task is analyzed. Hence, the aggregation of the fittings is defined as the scene according to the professional knowledge of the power field and the habit of the operators in identifying the fittings.

View Article and Find Full Text PDF

Enhancing Time Series Anomaly Detection: A Knowledge Distillation Approach with Image Transformation.

Sensors (Basel)

December 2024

Division of Computer Science & Artificial Intelligence, Dongguk University, Seoul 04620, Republic of Korea.

Anomaly detection is critical in safety-sensitive fields, but faces challenges from scarce abnormal data and costly expert labeling. Time series anomaly detection is relatively challenging due to its reliance on sequential data, which imposes high computational and memory costs. In particular, it is often composed of real-time collected data that tends to be noisy, making preprocessing an essential step.

View Article and Find Full Text PDF

Inspection robots, which improve hazard identification and enhance safety management, play a vital role in the examination of high-risk environments in many fields, such as power distribution, petrochemical, and new energy battery factories. Currently, the position precision of the robots is a major barrier to their broad application. Exact kinematic model and control system of the robots is required to improve their location accuracy during movement on the unstructured surfaces.

View Article and Find Full Text PDF

Research into new solutions for wearable assistive devices for the visually impaired is an important area of assistive technology (AT). This plays a crucial role in improving the functionality and independence of the visually impaired, helping them to participate fully in their daily lives and in various community activities. This study presents a bibliometric analysis of the literature published over the last decade on wearable assistive devices for the visually impaired, retrieved from the Web of Science Core Collection (WoSCC) using CiteSpace, to provide an overview of the current state of research, trends, and hotspots in the field.

View Article and Find Full Text PDF

Design and Evaluation of Augmented Reality-Enhanced Robotic System for Epidural Interventions.

Sensors (Basel)

December 2024

Surgical Performance Enhancement and Robotics (SuPER) Centre, Department of Surgery, McGill University, Montreal, QC H3A 0G4, Canada.

The epidural injection is a medical intervention to inject therapeutics directly into the vicinity of the spinal cord for pain management. Because of its proximity to the spinal cord, imprecise insertion of the needle may result in irreversible damage to the nerves or spinal cord. This study explores enhancing procedural accuracy by integrating a telerobotic system and augmented reality (AR) assistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!