Background: Francisella tularensis subsp. tularensis is classified as a Category A bioweapon that is capable of establishing a lethal infection in humans upon inhalation of very few organisms. However, the virulence mechanisms of this organism are not well characterized. Francisella tularensis subsp. novicida, which is an equally virulent subspecies in mice, was used in concert with a microPET scanner to better understand its temporal dissemination in vivo upon intranasal infection and how such dissemination compares with other routes of infection. Adult mice were inoculated intranasally with F. tularensis subsp. novicida radiolabeled with 64Cu and imaged by microPET at 0.25, 2 and 20 hours post-infection.

Results: 64Cu labeled F. tularensis subsp. novicida administered intranasally or intratracheally were visualized in the respiratory tract and stomach at 0.25 hours post infection. By 20 hours, there was significant tropism to the lung compared with other tissues. In contrast, the images of radiolabeled F. tularensis subsp. novicida when administered intragastrically, intradermally, intraperitoneally and intravenouslly were more generally limited to the gastrointestinal system, site of inoculation, liver and spleen respectively. MicroPET images correlated with the biodistribution of isotope and bacterial burdens in analyzed tissues.

Conclusion: Our findings suggest that Francisella has a differential tissue tropism depending on the route of entry and that the virulence of Francisella by the pulmonary route is associated with a rapid bacteremia and an early preferential tropism to the lung. In addition, the use of the microPET device allowed us to identify the cecum as a novel site of colonization of Francisella tularensis subsp. novicida in mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2651876PMC
http://dx.doi.org/10.1186/1471-2180-8-215DOI Listing

Publication Analysis

Top Keywords

tularensis subsp
24
subsp novicida
20
francisella tularensis
16
tularensis
8
025 hours
8
novicida administered
8
tropism lung
8
francisella
6
subsp
6
infection
5

Similar Publications

An Emerging Role for Ticks as Vectors of Tularaemia in Sweden.

Vet Med Sci

January 2025

Department of Chemistry, Environment and Feed Hygiene, SVA, Uppsala, Sweden.

Background: The zoonotic bacterium Francisella tularensis, the causative agent of tularaemia, can be transmitted to humans via multiple routes, including through contact with infected animals, contaminated water or arthropod vectors. Ticks have not previously been described as transmitting the disease in Sweden. Recently, Ixodid tick species have expanded their latitudinal and altitudinal range in Sweden to areas where the disease is endemic.

View Article and Find Full Text PDF

Development of a Real-Time PCR Assay for the Detection of spp. and the Identification of subsp. .

Microorganisms

November 2024

Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Énergie Atomique (CEA), Université Paris-Saclay, 91198 Gif-sur-Yvette, France.

Article Synopsis
  • - Tularemia is an infectious disease that requires ongoing monitoring of both human and animal cases, along with tracking the pathogen in natural environments to effectively prevent and control outbreaks.
  • - The disease is caused by a bacterium with three different subspecies, and researchers have created a new real-time PCR test that can accurately detect these subspecies and identify where they’re spreading.
  • - The new PCR assay has been rigorously tested for accuracy and sensitivity, with very low limits of detection, enhancing tularemia surveillance efforts in Kazakhstan by allowing for direct detection of the pathogen in various samples.
View Article and Find Full Text PDF
Article Synopsis
  • Tularemia, caused by the bacterium Francisella tularensis, poses a significant threat to human health but lacks extensive data on its distribution in blood-feeding arthropods.
  • A study conducted in the Břeclav district in 2022 screened various hematophagous vectors, including ticks, mosquitoes, and blackflies, to check for the presence of this bacterium.
  • The results revealed only two positive samples for F. tularensis subsp. holarctica, both from the tick species Dermacentor reticulatus, while no presence was found in mosquitoes or blackflies.
View Article and Find Full Text PDF
Article Synopsis
  • CRISPR/Cas9 technology is effective for gene editing, but concerns about off-target effects remain significant, prompting research into more specific Cas9 variants.
  • A study compared the specific Cas9 from Francisella novicida (FnCas9) with the commonly used SpCas9 using advanced simulations to understand differences in their ability to target DNA accurately.
  • Findings showed that FnCas9's superior accuracy comes from its unique structural rearrangements and domain interactions rather than changes in the RNA:DNA hybrid, providing insights for developing Cas9 variants with enhanced precision for genome editing.
View Article and Find Full Text PDF

We performed nanopore-based metagenomic screening on 885 ticks collected from 6 locations in Mongolia and divided the results into 68 samples: 23 individual samples and 45 pools of 2-12 tick samples each. We detected bacterial and parasitic pathogens Anaplasma ovis, Babesia microti, Coxiella burnetii, Borrelia miyamotoi, Francisella tularensis subsp. holarctica and novicida, Spiroplasma ixodetis, Theileria equi, and Rickettsia spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!