We have established a cell line derived from a pleural effusion of breast scirrhous carcinoma. This cell line presented immunohistochemically negative for estrogen receptor and slightly positive for progesterone receptor, and positive for c-erbB/HER2/neu. However the original tumor was found to be positive for estrogen receptor and progesterone receptor and slightly positive for c-erbB/HER2/neu expression. Enzyme and electrochemiluminescence immunoassays of tumor markers in the conditioned medium by the cell line revealed they secrete CA15-3, NCC-ST-439 and HER2 protein. We believe the cell line will contribute to the therapeutic study of malignant breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1749-0774.2008.00056.x | DOI Listing |
EClinicalMedicine
December 2024
Nottingham Digestive Diseases Centre (NDDC), Translational Medical Sciences, School of Medicine, University of Nottingham, NG7 2UH, UK.
Background: Despite the availability of various pharmacological and behavioural interventions, alcohol-related mortality is rising. This systematic review aimed to critically evaluate the existing literature on the association between glucagon-like peptide-1 receptor agonists use (GLP-1 RAs) and alcohol consumption.
Methods: Electronic searches were conducted on Ovid Medline, EMBASE, PsycINFO, clintrials.
Front Neurosci
December 2024
Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.
Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.
View Article and Find Full Text PDFThe transmembrane protein Synapse Differentiation Induced Gene 4 (SynDIG4) functions as an auxiliary factor of AMPA receptors (AMPARs) and plays a critical role in excitatory synapse plasticity as well as hippocampal-dependent learning and memory. Mice lacking SynDIG4 have reduced surface expression of GluA1 and GluA2 and are impaired in single tetanus-induced long-term potentiation and NMDA receptor (NMDAR)-dependent long-term depression. These findings suggest that SynDIG4 may play an important role in regulating AMPAR distribution through intracellular trafficking mechanisms; however, the precise roles by which SynDIG4 governs AMPAR distribution remain unclear.
View Article and Find Full Text PDFUnlabelled: The With No lysine (WNK) kinases regulate processes such as cell volume and epithelial ion transport through the modulation of Cation Chloride Cotransporters such as the NaCl cotransporter, NCC, present in the distal convoluted tubule (DCT) of the kidney. Recently, the interaction of WNKs with Nuclear Receptor Binding Protein 1 (NRBP1) and Transforming Growth Factor β-Stimulated Clone 22 Domain (TSC22D) proteins was reported. Here we explored the effect of NRBP1 and TSC22Ds on WNK signaling in vitro and in the DCT.
View Article and Find Full Text PDFPurpose: The development of endocrine resistance remains a significant challenge in the clinical management of estrogen receptor-positive ( ) breast cancer. Metabolic reprogramming is a prominent component of endocrine resistance and a potential therapeutic intervention point. However, a limited understanding of which metabolic changes are conserved across the heterogeneous landscape of ER+ breast cancer or how metabolic changes factor into ER DNA binding patterns hinder our ability to target metabolic adaptation as a treatment strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!