Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Applications of latent class analysis in diagnostic test studies have assumed that all tests are measuring a common binary latent variable, the true disease status. In this article we describe a new approach that recognizes that tests based on different biological phenomena measure different latent variables, which in turn measure the latent true disease status. This allows for adjustment of conditional dependence between tests within disease categories. The model further allows for the inclusion of measured covariates and unmeasured random effects affecting test performance within latent classes. We describe a Bayesian approach for model estimation and describe a new posterior predictive check for evaluating candidate models. The methods are motivated and illustrated by results from a study of diagnostic tests for Chlamydia trachomatis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/sim.3470 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!