We consider parametric distributions intended to model heterogeneity in population size estimation, especially parametric stochastic abundance models for species richness estimation. We briefly review (conditional) maximum likelihood estimation of the number of species, and summarize the results of fitting 7 candidate models to frequency-count data, from a database of >40000 such instances, mostly arising from microbial ecology. We consider error estimation, goodness-of-fit assessment, data subsetting, and other practical matters. We find that, although the array of candidate models can be improved, finite mixtures of a small number of components (point masses or simple diffuse distributions) represent a promising direction. Finally we consider the connections between parametric models for abundance and incidence data, again noting the usefulness of finite mixture models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bimj.200810452 | DOI Listing |
Sci Rep
December 2024
Cancer Epidemiology Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Bruce B. Downs Blvd, Tampa, FL, 33612, USA.
An archetype signal dependent noise (SDN) model is a component used in analyzing images or signals acquired from different technologies. This model-component may share properties with stationary normal white noise (WN). Measurements from WN images were used as standards for making comparisons with SDN in both the image domain (ID) and Fourier domain (FD).
View Article and Find Full Text PDFISA Trans
December 2024
Department of Mathematics, Deshbandhu College, University of Delhi, New Delhi 110019, India. Electronic address:
Redundancy and maintainability-supported fault-tolerant machining systems are used in many industries to achieve pre-specified reliability and system capability. In this investigation, a non-Markov model for the machining system has been developed by involving the concepts of server vacation, server breakdown, and reboot process. The server may fail and undergo primary repair which may be unsuccessful in recovering the server.
View Article and Find Full Text PDFChaos
December 2024
School of Computation Information and Technology, Department of Mathematics, Technical University of Munich, Boltzmannstraße 3, 85748 Garching bei München, Germany.
This work deals with a parametric linear interpolation between an autonomous FitzHugh-Nagumo model and a nonautonomous skewed problem with the same fundamental structure. This paradigmatic example allows us to construct a family of nonautonomous dynamical systems with an attracting integral manifold and a hyperbolic repelling trajectory located within the nonautonomous set enclosed by the integral manifold. Upon the variation of the parameter the integral manifold collapses, the hyperbolic repelling solution disappears and a unique globally attracting hyperbolic solution arises in what could be considered yet another pattern of nonautonomous Hopf bifurcation.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Naval Architecture and Ocean Engineering, Hongik University, Jochiwon, Sejong 30016, Republic of Korea.
With the growing demand for wind energy, the development of advanced materials for wind turbine support structures and blades has garnered significant attention in both industry and academia. In previous research, the authors investigated the incorporation of graphene platelets (GPLs) into wind turbine blades, focusing on the structural performance and cost-effectiveness relative to conventional fiberglass composites. These studies successfully demonstrated the potential advantages of GPL reinforcement in improving blade performance and reducing the blade's weight and costs.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
In robotic-assisted laminectomy decompression, stable and precise vertebral plate cutting remains challenging due to manual dependency and the absence of adaptive skill-learning mechanisms. This paper presents an advanced robotic vertebral plate-cutting system that leverages patient-specific anatomical variations and replicates the surgeon's cutting technique through a trajectory parameter prediction model. A spatial mapping relationship between artificial and patient vertebrae is first established, enabling the robot to mimic surgeon-defined trajectories with high accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!