The significance of transcription factors PPAR alpha, LXR alpha, and their responsive/target genes for the pathogenesis of atherosclerosis in apolipoprotein E and low-density lipoprotein receptor double deficient (AL) mice fed with high fat and cholesterol (HF) diet were studied. C57BL/6J wild-type (WT) mice were used as control to the AL mice. Plasma lipid metabolites and morphological atherosclerotic lesions in aortic wall were determined. Semi- and real-time quantitative RT-PCR were used to measure gene expression patterns between AL mice and the controls, which were fed with HF or normal chow diet. The results showed that in AL mice fed with HF diet, plasma lipid levels, hepatic lipid accumulation, and atherogenesis together with upregulated PPAR alpha, LXR alpha, and their target genes, i.e., FAT, SCD1, FAS, Angptl3, and apoB100 significantly increased in a 12-week long feeding period. In contrast, apoAI, apoAIV, apoF, LPL, and SR-BI were decreased compared to chow-fed group. In WT mice, PPAR alpha, LXR alpha, FAS, Angpt13, CPT1, apoF, ACOX1, LPL, and SR-BI were increased with HF treatment, while apoAI and apoAIV were decreased markedly. The different changes of lipid metabolism-related genes between AL and WT mice, fed with HF diet or chow diet indicated that the mechanisms of dietary effects on gene mutant mice are different from those of intact WT mice. Since lipid metabolic system defected genetically in AL mice, we suggest that the changes of PPAR alpha, LXR alpha, and their target genes aggravated lipid metabolic disorder in the liver and further accelerated the development of atherosclerosis on a stress of HF diet feeding in AL mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-008-9982-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!