We have focused our research on understanding the basic biology of and developing novel therapeutic and prophylactic DNA vaccines. We have among others three distinct primary areas of interest which include: 1. Enhancing in vivo delivery and transfection of DNA vaccine vectors 2. Improving DNA vaccine construct immunogenicity 3. Using molecular adjuvants to modulate and skew immune responses. Key to the immunogenicity of DNA vaccines is the presentation of expressed antigen to antigen-presenting cells. To improve expression and presentation of antigen, we have investigated various immunization methods with current focus on a combination of intramuscular injection and electroporation. To improve our vaccine constructs, we also employed methods such as RNA/codon optimization and antigen consensus to enhance expression and cellular/humoral cross-reactivity, respectively. Our lab also researches the potential of various molecular adjuvants to skew Th1/Th2 responses, enhance cellular/humoral responses, and improve protection in various animal models. Through improving our understanding of basic immunology as it is related to DNA vaccine technology, our goal is to develop the technology to the point of utility for human and animal health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12026-008-8076-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!