Genetic structuring in response to the glacial cycles has been investigated for many plant species, but exclusively high-arctic ones have not been studied. Such extremely cold-adapted species have probably experienced range reductions under the present climate. Here we compare three predominantly selfing species of Draba with different distributions and hardiness (D. subcapitata, high-arctic; D. nivalis, arctic to arctic-alpine; D. fladnizensis, arctic-alpine) for genetic structuring on the basis of two different types of molecular markers (10 microsatellite loci and 160 amplified fragment length polymorphisms (AFLPs)). The degree of genetic structuring within these species is of particular interest because it has been shown that they contain many cryptic biological species. The high-arctic D. subcapitata had less phylogeographic structure, less diversity and fewer private alleles than the other two species, suggesting that long-distance dispersal may occur more frequently in the high arctic, that hardy plants may have higher probability for establishment after dispersal under high-arctic conditions and that high-arctic species may have experienced a bottleneck during the present interglacial. In contrast, D. fladnizensis and D. nivalis showed distinct phylogeographic structure and more diversity, suggesting separate long-term refugia in Eurasia and North America/Beringia. The AFLP markers revealed more phylogeographic structuring than the microsatellites, possibly because of the higher number of loci surveyed and/or because structure at very large geographic scales is blurred by high mutation rate leading to homoplasy at microsatellite loci. The number of genetic groups detected was in any case insignificant compared with the numerous cryptic biological species known within these species, supporting rapid development of sterility barriers.

Download full-text PDF

Source
http://dx.doi.org/10.1038/hdy.2008.120DOI Listing

Publication Analysis

Top Keywords

genetic structuring
16
species
10
plant species
8
species experienced
8
microsatellite loci
8
cryptic biological
8
biological species
8
phylogeographic structure
8
structure diversity
8
high-arctic
6

Similar Publications

Symbiotic interactions, central to most life on Earth, are interwoven associations that vary in intimacy and duration. Some of the most well-known examples of symbioses occur between animals and gut bacteria. These associations lead to physiological integration of host and symbionts.

View Article and Find Full Text PDF

Introduction: , a genus within the Zingiberales order, is renowned for its diverse morphology, suggesting a rich genetic reservoir. However, genetic research on plants within the family has primarily focused on taxonomy and phylogenetics, with limited exploration into other genetic aspects, particularly the chloroplast genome. Given the significance of chloroplast genomes in evolutionary studies, a deeper understanding of their structure and diversity within Heliconia is essential.

View Article and Find Full Text PDF

Insular species are usually endemic and prone to long-term population reduction, low genetic diversity, and inbreeding depression, which results in difficulties in species conservation. The situation is even more challenging for the glacial relict species whose habitats are usually fragmented in the mountainous regions. is an endangered and endemic relict tree species in Taiwan.

View Article and Find Full Text PDF

With the rapid advancement of plant phenotyping research, understanding plant genetic information and growth trends has become crucial. Measuring seedling length is a key criterion for assessing seed viability, but traditional ruler-based methods are time-consuming and labor-intensive. To address these limitations, we propose an efficient deep learning approach to enhance plant seedling phenotyping analysis.

View Article and Find Full Text PDF

The methylation- demethylation dynamics of RNA plays major roles in different biological functions, including stress responses, in plants. mA methylation in RNA is orchestrated by a coordinated function of methyl transferases (writers) and demethylases (Erasers). Genome-wide analysis of genes involved in methylation and demethylation was performed in pigeon pea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!