The Wnt pathway is a key regulator of embryonic development and stem cell self-renewal, and hyperactivation of the Wnt signalling is associated with many human cancers. The central player in the Wnt pathway is beta-catenin, a cytoplasmic protein whose function is tightly controlled by ubiquitination and degradation, however the precise regulation of beta-catenin stability/degradation remains elusive. Here, we report a new mechanism of beta-catenin ubiquitination acting in the context of chromatin. This mechanism is mediated by the histone acetyltransferase (HAT) complex component TRRAP and Skp1, an invariable component of the Skp-Cullin-F-box (SCF) ubiquitin ligase complex. TRRAP interacts with Skp1/SCF and mediates its recruitment to beta-catenin target promoter in chromatin. TRRAP deletion leads to a reduced level of beta-catenin ubiquitination, lower degradation rate and accumulation of beta-catenin protein. Furthermore, recruitment of Skp1 to chromatin and ubiquitination of chromatin-bound beta-catenin are abolished upon TRRAP knock-down, leading to an abnormal retention of beta-catenin at the chromatin and concomitant hyperactivation of the canonical Wnt pathway. These results demonstrate that there is a distinct regulatory mechanism for beta-catenin ubiquitination/ destruction acting in the nucleus which functionally complements cytoplasmic destruction of beta-catenin and prevents its oncogenic stabilization and chronic activation of the canonical Wnt pathway.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cc.7.24.7354DOI Listing

Publication Analysis

Top Keywords

wnt pathway
20
beta-catenin ubiquitination
12
canonical wnt
12
beta-catenin
11
mechanism beta-catenin
8
wnt
6
trrap
5
ubiquitination
5
chromatin
5
pathway
5

Similar Publications

Cancer Stem Cells (CSCs) play an important role in the development, resistance, and recurrence of many malignancies. These subpopulations of tumor cells have the potential to self-renew, differentiate, and resist conventional therapy, highlighting their importance in cancer etiology. This review explores the regulatory mechanisms of CSCs in breast, cervical, and lung cancers, highlighting their plasticity, self-renewal, and differentiation capabilities.

View Article and Find Full Text PDF

Purpose: Postmenopausal osteoporosis (PMO) is mainly concerned with the imbalance of bone resorption and bone formation. Icariin (ICA) plays a vital role in bone protection. This study investigated the mechanism of ICA in PMO rats.

View Article and Find Full Text PDF

Background: In approximately 80% of colorectal cancer cases, mutations in the adenomatous polyposis coli () gene disrupt the Wingless-related integration site (Wnt)/β-catenin signaling pathway, a crucial factor in carcinogenesis. This disruption may result in consequences such as aberrant spindle segregation and mitotic catastrophe. This study aimed to analyze the effectiveness of the ethanolic extract of red okra () pods (EEROP) in inducing apoptosis in colorectal cancer cells (SW480) by inhibiting the Wnt/β-catenin signaling pathway.

View Article and Find Full Text PDF

Introduction: Bone aging is linked to changes in the lineage differentiation of bone marrow stem cells (BMSCs), which show a heightened tendency to differentiate into adipocytes instead of osteoblasts. The therapeutic potential of irisin in addressing age-related diseases has garnered significant attention. More significantly, irisin has the capacity to enhance bone mass recovery and sustain overall bone health.

View Article and Find Full Text PDF

Liver cancer, and in particular hepatocellular carcinoma (HCC) is a disease of rising prevalence and incidence. To date, definitive treatment options include either surgical excision or ablation of the affected area. With increasing research on several pathways that could be involved in the progression of HCC, new elements within these pathways emerge as potential targets for novel therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!