Intercellular peptide signals regulate plant meristematic cell fate decisions.

Sci Signal

Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.

Published: December 2008

Plant stem cells secrete peptides that, after processing to release the active form, prevent neighboring cells from adopting a stem cell fate by activating a leucine-rich repeat (LRR) receptor-mediated pathway. Other plant meristematic cell fate decisions, such as those made during the patterning of veins and stomata, also appear to be controlled by similar LRR receptor pathways that are activated by secreted peptide signals. It is therefore probable that peptide ligands regulate meristematic activity in many plant developmental processes.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scisignal.149pe53DOI Listing

Publication Analysis

Top Keywords

cell fate
12
peptide signals
8
plant meristematic
8
meristematic cell
8
fate decisions
8
intercellular peptide
4
signals regulate
4
plant
4
regulate plant
4
decisions plant
4

Similar Publications

Article Synopsis
  • Primary ciliary dyskinesia (PCD) is a rare genetic disorder linked to chronic respiratory issues, infertility, and problems with body asymmetry, primarily caused by mutations in the CCDC39 and CCDC40 genes.
  • Researchers used advanced techniques to investigate how these genetic variants impact cellular functions beyond just causing cilia to stop moving.
  • They discovered that the absence of CCDC39/CCDC40 creates a significant loss of over 90 ciliary structural proteins, leading to cilia dysfunction and other cellular issues, suggesting that gene therapy could potentially offer a new treatment strategy for PCD.
View Article and Find Full Text PDF

Sphingolipids serve as building blocks of membranes to ensure subcellular compartmentalization and facilitate intercellular communication. How cell type-specific lipid compositions are achieved and what is their functional significance in tissue morphogenesis and maintenance has remained unclear. Here, we identify a stem cell-specific role for ceramide synthase 4 (CerS4) in orchestrating fate decisions in skin epidermis.

View Article and Find Full Text PDF

Cell fate decisions during cortical development sculpt the identity of long-range connections that subserve complex behaviors. These decisions are largely dictated by mutually exclusive transcription factors, including CTIP2/Bcl11b for subcerebral projection neurons and BRN1/Pou3f3 for intra-telencephalic projection neurons. We have recently reported that the balance of cortical CTIP2-expressing neurons is altered in a mouse model of DDX3X syndrome, a female-biased neurodevelopmental disorder associated with intellectual disability, autism spectrum disorder, and significant motor challenges.

View Article and Find Full Text PDF

Long-term effects of social play on neural and behavioral development remain unclear. We investigated whether just 1 h of juvenile social play could rescue the effects of play deprivation on stress-related behavior and markers of neural plasticity. Syrian hamsters were reared from postnatal days 21-43 in three conditions: peer isolation, peer isolation with daily social play sessions (dyadic play), or group-housed with littermates.

View Article and Find Full Text PDF

Unlabelled: Post-acute sequelae of COVID-19 involves several organs, but its basis remains poorly understood. Some infected cells in mice survive the acute infection and persist for extended periods in the respiratory tract but not in other tissues. Here, we describe two experimental models of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection to assess the effect of viral virulence on previously infected cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!