Unlabelled: PCK rats, an animal model of autosomal recessive polycystic kidney disease (ARPKD), develop cholangiocyte-derived liver cysts associated with increased intracellular adenosine 3',5'-cyclic adenosine monophosphate (cAMP), the inhibition of which suppresses cyst growth. We hypothesized that elevated cAMP stimulates cholangiocyte proliferation via two downstream effectors, exchange proteins activated by cAMP (Epac1 and Epac2 isoforms) and protein kinase A (PKA), and that intracellular calcium is also involved in this process. Assessment of Epac isoforms and PKA regulatory subunits at the messenger RNA and protein level showed that cultured normal rat cholangiocytes express Epac1, Epac2, and all regulatory PKA subunits. Epac isoforms and the PKA RIbeta subunit were overexpressed in cultured PCK cholangiocytes. Proliferation analysis in response to Epac and PKA activation indicated that both normal and PCK cholangiocytes increase their growth upon Epac-specific stimulation, while PKA-specific stimulation results in differential effects, suppressing proliferation in normal cholangiocytes but accelerating this process in PCK cholangiocytes. On the other hand, both PKA and Epac activation of cystic structures generated by normal and PCK cholangiocytes when cultured under three-dimensional conditions resulted in increased cyst growth, particularly in PCK-cholangiocyte derived cysts. Pharmacological inhibitors and small interfering RNA-mediated gene silencing demonstrated the specificity of each effector activation, as well as the involvement of MEK-ERK1/2 signaling in all the observed effector-associated proliferation changes. Hyperproliferation of PCK cholangiocytes in response to PKA stimulation, but not to Epac stimulation, was found to be associated with decreased intracellular calcium, and restoration of calcium levels blocked the PKA-dependent proliferation via the PI3K/AKT pathway.
Conclusion: Our data provide strong evidence that both cAMP effectors, Epac and PKA, and the levels of intracellular calcium are involved in the hepatic cystogenesis of ARPKD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063896 | PMC |
http://dx.doi.org/10.1002/hep.22636 | DOI Listing |
JHEP Rep
October 2021
Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
Background & Aims: Polycystic liver disease (PLD) is characterised by increased autophagy and reduced miRNA levels in cholangiocytes. Given that autophagy has been implicated in miRNA regulation, we tested the hypothesis that increased autophagy accounts for miRNA reduction in PLD cholangiocytes (PLDCs) and accelerated hepatic cystogenesis.
Methods: We assessed miRNA levels in cultured normal human cholangiocytes (NHCs), PLDCs, and isolated PLDC autophagosomes by miRNA-sequencing (miRNA-seq), and miRNA targets by mRNA-seq.
Am J Physiol Gastrointest Liver Physiol
April 2021
Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan.
Polycystic liver disease (PLD) is a hereditary liver disease in which the number of cysts increases over time, causing various abdominal symptoms and poor quality of life. Although effective treatment for PLD has not been established, we recently reported that long-term exercise ameliorated liver cyst formation and fibrosis with the activation of AMP-activated protein kinase (AMPK) in polycystic kidney (PCK) rats, a PLD model. Therefore, the aim of this study was to investigate whether metformin, an indirect AMPK activator, was effective in PCK rats.
View Article and Find Full Text PDFJ Hepatol
February 2021
Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital -, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain. Electronic address:
Background & Aims: Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of multiple fluid-filled biliary cysts. Most PLD-causative genes participate in protein biogenesis and/or transport. Post-translational modifications (PTMs) are implicated in protein stability, localization and activity, contributing to human pathobiology; however, their role in PLD is unknown.
View Article and Find Full Text PDFLiver Int
July 2020
Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.
Background & Aims: Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of multiple biliary cysts. Recently, novel PLD-causative genes, encoding for endoplasmic reticulum (ER)-resident proteins involved in protein biogenesis and transport, were identified. We hypothesized that aberrant proteostasis contributes to PLD pathogenesis, representing a potential therapeutic target.
View Article and Find Full Text PDFAm J Pathol
October 2018
Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.
Caroli disease represents a hepatic manifestation of autosomal recessive polycystic kidney disease, and belongs to a class of cholangiociliopathies. The role of Hedgehog signaling, a major pathway regulated by primary cilia, in biliary cystogenesis in Caroli disease remains unknown. Using the polycystic kidney (PCK) rat as an animal model of Caroli disease, this study investigated the involvement of Hedgehog signaling in its pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!