Sensitive and reliable methods are required for the assessment of oxidative DNA damage, which can result from reactive oxygen species that are generated endogenously from cellular metabolism and inflammatory responses, or by exposure to exogenous agents. The development of a liquid chromatography/tandem mass spectrometry (LC/MS/MS) selected reaction monitoring (SRM) method is described, that utilises online column-switching valve technology for the simultaneous determination of two DNA adduct biomarkers of oxidative stress, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxodA). To allow for the accurate quantitation of both adducts the corresponding [(15)N(5)]-labelled stable isotope internal standards were synthesised and added prior to enzymatic hydrolysis of the DNA samples to 2'-deoxynucleosides. The method required between 10 and 40 microg of hydrolysed DNA on-column for the analysis and the limit of detection for both 8-oxodG and 8-oxodA was 5 fmol. The analysis of calf thymus DNA treated in vitro with methylene blue (ranging from 5 to 200 microM) plus light showed a dose-dependent increase in the levels of both 8-oxodG and 8-oxodA. The level of 8-oxodG was on average 29.4-fold higher than that of 8-oxodA and an excellent linear correlation (r = 0.999) was observed between the two adducts. The influence of different DNA extraction procedures for 8-oxodG and 8-oxodA levels was assessed in DNA extracted from rat livers following dosing with carbon tetrachloride. The levels of 8-oxodG and 8-oxodA were on average 2.9 (p = 0.018) and 1.4 (p = 0.018) times higher, respectively, in DNA samples extracted using an anion-exchange column procedure than in samples extracted using a chaotropic procedure, implying artefactual generation of the two adducts. In conclusion, the online column-switching LC/MS/MS SRM method provides the advantages of increased sample throughput with reduced matrix effects and concomitant ionisation suppression, making the method ideally suited when used in conjunction with chaotropic DNA extraction for the determination of oxidative DNA damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.3866 | DOI Listing |
J Appl Toxicol
December 2021
Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
Despite the widespread use of silver nanoparticles (AgNPs) in different fields and the amount of investigations available, to date, there are many contradictory results on their potential toxicity. In the present study, extensively characterized 20-nm AgNPs were investigated using optimized protocols and standardized methods to test several toxicological endpoints in different cell lines. The agglomeration/aggregation state of AgNPs in culture media was measured by dynamic light scattering (DLS).
View Article and Find Full Text PDFNat Chem Biol
July 2013
Center for Integrated Protein Science at the Department of Chemistry, Ludwig Maximilians University, Munich, Germany.
8-Oxopurines (8-oxodG and 8-oxodA) and formamidopyrimidines (FaPydG and FaPydA) are major oxidative DNA lesions involved in cancer development and aging. Their mutagenicity is believed to result from a conformational shift of the N9-C1' glycosidic bonds from anti to syn, which allows the lesions to form noncanonical Hoogsteen-type base pairs with incoming triphosphates during DNA replication. Here we present biochemical data and what are to our knowledge the first crystal structures of carbocyclic FaPydA and FaPydG containing DNA in complex with a high-fidelity polymerase.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
January 2009
Biocentre, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK.
Sensitive and reliable methods are required for the assessment of oxidative DNA damage, which can result from reactive oxygen species that are generated endogenously from cellular metabolism and inflammatory responses, or by exposure to exogenous agents. The development of a liquid chromatography/tandem mass spectrometry (LC/MS/MS) selected reaction monitoring (SRM) method is described, that utilises online column-switching valve technology for the simultaneous determination of two DNA adduct biomarkers of oxidative stress, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxodA). To allow for the accurate quantitation of both adducts the corresponding [(15)N(5)]-labelled stable isotope internal standards were synthesised and added prior to enzymatic hydrolysis of the DNA samples to 2'-deoxynucleosides.
View Article and Find Full Text PDFFree Radic Res
October 2008
Department of Cancer, Radiation and Oxidative Stress Section, Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, UK.
Non-invasive monitoring of oxidative stress is highly desirable. Urinary 7,8-8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) is a biologically relevant and convenient analytical target. However, immunoassays can over-estimate levels of urinary 8-oxodG.
View Article and Find Full Text PDFNucleic Acids Symp Ser (Oxf)
April 2008
Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA.
A number of mutations that arise in the cell come from oxidative damage to DNA bases. Oxidation of purine bases at the 8-position, yielding 8-oxoguanosine and 8-oxoadenosine, results in conformation changes that cause miscoding during DNA replication. For example, 8-oxodG in the syn conformation is complementary to adenine in the hydrogen bonding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!