We demonstrate the first high speed silicon evanescent Mach Zehnder modulator and switch. The modulator utilizes carrier depletion within AlGaInAs quantum wells to obtain V(pi) L of 2 V-mm and clear open eye at 10 Gb/s. The switch exhibits a power penalty of 0.5 dB for all ports at 10 Gb/s modulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.16.020571 | DOI Listing |
Vaccines (Basel)
December 2024
Internal Medicine, Faculty of Medicine and Surgery, Unicamillus, International School of Medicine, 00131 Rome, Italy.
Unlabelled: mRNA vaccines represent a milestone in the history of vaccinology, because they are safe, very effective, quick and cost-effective to produce, easy to adapt should the antigen vary, and able to induce humoral and cellular immunity.
Methods: To date, only two COVID-19 mRNA and one RSV vaccines have been approved. However, several mRNA vaccines are currently under development for the prevention of human viral (influenza, human immunodeficiency virus [HIV], Epstein-Barr virus, cytomegalovirus, Zika, respiratory syncytial virus, metapneumovirus/parainfluenza 3, Chikungunya, Nipah, rabies, varicella zoster virus, and herpes simplex virus 1 and 2), bacterial (tuberculosis), and parasitic (malaria) diseases.
Sensors (Basel)
December 2024
Department of Aerospace Engineering, Chosun University, Gwangju 61452, Republic of Korea.
This paper presents a novel control framework for enhancing the attitude stabilization of multirotor UAVs using Control Moment Gyros (CMGs) and a Disturbance Robust Drive Law (DRDL). Due to their lightweight and compact structure, multirotor UAVs are highly susceptible to disturbances such as wind, making it challenging to achieve stable attitude control using rotor thrust alone. To address this issue, we employ CMGs to provide robust attitude control and apply Fast Terminal Sliding Mode Control (FTSMC) to ensure fast and accurate convergence within a finite time.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Zhejiang Institute of Mechanical & Electrical Engineering Co., Ltd., Hangzhou 310051, China.
This study addresses the challenges of magnetic circuit coupling and control complexity in active radial magnetic bearings (ARMBs) by systematically investigating the electromagnetic performance of four magnetic pole configurations (NNSS, NSNS, NNNN, and SSSS). Initially, equivalent magnetic circuit modeling and finite element analysis (FEA) were employed to analyze the magnetic circuit coupling phenomena and their effects on the magnetic flux density distribution for each configuration. Subsequently, the air gap flux density and electromagnetic force were quantified under rotor eccentricity caused by unbalanced disturbances, and the dynamic performances of the ARMBs were evaluated for eccentricity along the x-axis and at 45°.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China.
Transformer is a powerful model widely used in artificial intelligence applications. It contains complex structures and has extremely high computational requirements that are not suitable for embedded intelligent sensors with limited computational resources. The binary quantization technology takes up less memory space and has a faster calculation speed; however, it is seldom studied for the lightweight transformer.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Automation, Xiamen University, Xiamen 361102, China.
Recent advancements in the field of object tracking have been notably influenced by Siamese-based trackers, which have demonstrated considerable progress in their performance and application. Researchers frequently emphasize the precision of trackers, yet they tend to neglect the associated complexity. This oversight can restrict real-time performance, rendering these trackers inadequate for specific applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!