We develop a novel method for structure determination of confined fluids using diffraction-grating-based x-ray interferometry.Within this approach, diffraction from a microfluidic array, which acts both as confinement and transmission diffraction grating, provides the reference wave, whereas the density modulations of the confined fluid, acting as a weak phase object, generate the object wave. The ensemble-averaged density profile of the fluid perpendicular to the confining channel is then unambiguously obtained from the interference between the reference and object waves by direct Fourier inversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.16.020522 | DOI Listing |
Sci Rep
January 2025
Key Laboratory of Gas and Fire Control for Mines, Ministry of Education, Xuzhou, 221116, China.
Confined space fires could easily cause serious casualties and property damage, and foam is an effective means of preventing confined space fires. The existing foam generator does not have both momentum and foam expansion rate (FER) and is poorly suited to confined spaces. In order to develop a foam generator suitable for confined space fire protection, an in-depth analysis of the physical foaming characteristics of self-suction foam is required, and the structure of the foam generator is optimized accordingly.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Weizmann Institute of Science, Rehovot 7610001, Israel.
We consider turbulence of waves interacting weakly via four-wave scattering (sea waves, plasma waves, spin waves, etc.). In the first order in the interaction, a closed kinetic equation has stationary solutions describing turbulent cascades.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Laboratoire de Physique de l'Ecole Normale Supérieure, Paris, France.
The world of nanoscales in fluidics is the frontier where the continuum of fluid mechanics meets the atomic, and even quantum, nature of matter. While water dynamics remains largely classical under extreme confinement, several experiments have recently reported coupling between water transport and the electronic degrees of freedom of the confining materials. This avenue prompts us to reconsider nanoscale hydrodynamic flows under the perspective of interacting excitations, akin to condensed matter frameworks.
View Article and Find Full Text PDFNeurol Int
December 2024
Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10126 Turin, Italy.
Background: Post-traumatic pseudomeningoceles are common findings after a brachial or lumbar plexus trauma, in particular after nerve root avulsion. Unlike meningoceles, pseudomeningoceles are CSF full-filled cysts confined by the paraspinous soft tissue, along the normal nerve course, in communication with the spinal subarachnoid spaces. Normally no more than a radiological finding at MRI, in rare instances they might be symptomatic due to their size or might constitute an obstacle during a reconstructive surgery.
View Article and Find Full Text PDFChem Sci
December 2024
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
Nanofluidics is a system of fluid transport limited to a nano-confined space, including the transport of ions and molecules. The use of intelligent nanofluidics has shown great potential in energy conversion. However, ion transport is hindered by homogeneous membranes with uniform charge distribution and concentration polarization, which often leads to an undesirable power conversion performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!