Molecular and phenotypical characterization of human amniotic fluid cells and their differentiation potential.

Biomed Mater Eng

Cell Factory, Centro di Medicina Trasfusionale, Terapia Cellulare e Criobiologia, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy.

Published: February 2009

Download full-text PDF

Source

Publication Analysis

Top Keywords

molecular phenotypical
4
phenotypical characterization
4
characterization human
4
human amniotic
4
amniotic fluid
4
fluid cells
4
cells differentiation
4
differentiation potential
4
molecular
1
characterization
1

Similar Publications

Cellular senescence is a phenotypic state that contributes to the progression of age-related disease through secretion of pro-inflammatory factors known as the senescence-associated secretory phenotype (SASP). Understanding the process by which healthy cells become senescent and develop SASP factors is critical for improving the identification of senescent cells and, ultimately, understanding tissue dysfunction. Here, we reveal how the duration of cellular stress modulates the SASP in distinct subpopulations of senescent cells.

View Article and Find Full Text PDF

Cellular senescence is understood to be a biological process that is defined as irreversible growth arrest and was originally recognized as a tumor-suppressive mechanism that prevents further propagation of damaged cells. More recently, cellular senescence has been shown to have a dual role in prevention and tumor promotion. Senescent cells carry a senescence-associated secretory phenotype (SASP), which is altered by secretory factors including pro-inflammatory cytokines, chemokines, and other proteases, leading to the alteration of the tissue microenvironment.

View Article and Find Full Text PDF

Phenotypic Heterogeneity of ADTKD-MUC1 Diagnosed Using VNtyper, a Novel Genetic Technique.

Am J Kidney Dis

January 2025

Hereditary Kidney Diseases Laboratory, Inserm UMR 1163, Imagine Institute, Paris Cité University, Paris, France; Department of Genomic Medicine for Rare Diseases, Necker-Enfants Malades Hospital, Assistance publique, Hôpitaux de Paris (AP-HP), Paris, France. Electronic address:

Rationale & Objective: Molecular diagnosis of autosomal dominant tubulointerstitial kidney disease (ADTKD) due to variants in the MUC1 gene has long been challenging since variants lie in a large Variable Number of Tandem Repeat (VNTR) region, making identification impossible using standard short read techniques. Previously, we addressed this diagnostic limitation by developing a computational pipeline, named VNtyper, for easier reliable detection of MUC1 VNTR pathogenic variants from short read sequences. This led to unexpected diagnoses of ADTKD-MUC1 among patients with kidney disease referred for genetic testing, which we report here.

View Article and Find Full Text PDF

Background: Systemic inflammation plays a crucial role in the development and progression of chronic heart failure (CHF) across all phenotypes. The continuous release of pro-inflammatory cytokines causes muscle atrophy and adipocyte breakdown, ultimately resulting in cachexia. Long non-coding RNAs (lncRNAs) are emerging as potential biomarkers associated with cachexia, as they indirectly regulate muscle and fat tissue metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!