Soft contact lenses functionalized with pendant cyclodextrins for controlled drug delivery.

Biomaterials

Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain.

Published: March 2009

AI Article Synopsis

Article Abstract

The aim of this work was to develop acrylic hydrogels with high proportions of cyclodextrins maintaining the mechanical properties and the biocompatibility of the starting hydrogels, but notably improving their ability to load drugs and to control their release rate. Poly(hydroxyethylmethacrylate) hydrogels were prepared by copolymerization with glycidyl methacrylate (GMA) at various proportions and then beta-cyclodextrin (betaCD) was grafted to the network by reaction with the glycidyl groups under mild conditions. This led to networks in which the betaCDs form no part of the structural chains but they are hanging on 2-3 ether bonds through the hydroxyl groups. The pendant betaCDs did not modify the light transmittance, glass transition temperature, swelling degree, viscoelasticity, oxygen permeability, or surface contact angle of the hydrogels, but decreased their friction coefficient by 50% and improved diclofenac loading by 1300% and enhanced drug affinity 15-fold. The hydrogels were able to prevent drug leakage to a common conservation liquid for soft contact lenses (SCLs) and to sustain drug delivery in lacrimal fluid for two weeks. To summarize, the hydrogels with pendant betaCDs are particularly useful for the development of cytocompatible medicated implants or biomedical devices, such as drug-loaded SCLs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2008.11.016DOI Listing

Publication Analysis

Top Keywords

soft contact
8
contact lenses
8
drug delivery
8
pendant betacds
8
hydrogels
6
lenses functionalized
4
functionalized pendant
4
pendant cyclodextrins
4
cyclodextrins controlled
4
drug
4

Similar Publications

Piezoresistive Cantilever Microprobe with Integrated Actuator for Contact Resonance Imaging.

Sensors (Basel)

January 2025

Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.

A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.

View Article and Find Full Text PDF

Angle-Dependent Adhesive Mechanics in Hard-Soft Cylindrical Material Interfaces.

Materials (Basel)

January 2025

Department of System Dynamics and Friction Physics, Institute of Mechanics, Technische Universität Berlin, 10623 Berlin, Germany.

In this research, the adhesive contact between a hard steel and a soft elastomer cylinder was experimentally studied. In the experiment, the hard cylinder was indented into the soft one, after which the two cylinders were separated. The contact area between the cylinders was elliptical in shape, and the eccentricity of this increased as the angle between the axes of the contacting cylinders decreased.

View Article and Find Full Text PDF

Creating and maintaining a favorable microenvironment for electrocatalytic CO reduction reaction (eCORR) is challenging due to the vigorous interactions with both gas and electrolyte solution during the electrocatalysis. Herein, to boost the performance of eCORR, a unique synthetic method that deploys the in situ reduction of precoated precursors is developed to produce activated Ag nanoparticles (NPs) within the gas diffusion layer (GDL), where the thus-obtained Ag NPs-Skeleton can block direct contact between the active Ag sites and electrolyte. Specifically, compared to the conventional surface loading mode in the acidic media, our freestanding and binder free electrode can achieve obvious higher CO selectivity of 94%, CO production rate of 23.

View Article and Find Full Text PDF

Interface Engineering and Modulation of Nickel Oxide for High Air-Stable p-Type Crystalline Silicon Solar Cells.

Small

January 2025

Anhui Soltrend New Energy Technology Co., Ltd, Lujiang County, Hefei, 230000, China.

Dopant-free passivating contact crystalline silicon solar cells hold the potential of higher efficiency and cost down. In the hole-transport terminal, one still faces the challenge of trade-off between efficiency and stability. In this work, a H-AlO/NiO/Ni stacked hole-transport layer is proposed, where the H-AlO standing for H-rich AlO film can effectively reduce the interfacial defects and the high work function Ni metal results in a low contact resistance of 47.

View Article and Find Full Text PDF

Contact Dynamic Behaviors of Magnetic Hydrogel Soft Robots.

Gels

December 2024

Department of Mechanics and Engineering Science, School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.

Magnetic hydrogel soft robots have shown great potential in various fields. However, their contact dynamic behaviors are complex, considering stick-slip motion at the contact interface, and lack accurate computational models to analyze them. This paper improves the numerical computational method for hydrogel materials with magneto-mechanical coupling effect, analyses the inchworm-like contact motion of the biomimetic bipedal magnetic hydrogel soft robot, and designs and optimizes the robot's structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!