The effect of the nonionic block copolymer pluronic P85 on gene expression in mouse muscle and antigen-presenting cells.

Biomaterials

Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, United States.

Published: February 2009

DNA vaccines can be greatly improved by polymer agents that simultaneously increase transgene expression and activate immunity. We describe here Pluronic P85 (P85), a triblock copolymer of ethylene oxide (EO) and propylene oxide (PO) EO(26)-PO(40)-EO(26). Using a mouse model we demonstrate that co-administration of a bacterial plasmid DNA with P85 in a skeletal muscle greatly increases gene expression in the injection site and distant organs, especially the draining lymph nodes and spleen. The reporter expression colocalizes with the specific markers of myocytes and keratinocytes in the muscle, as well as dendritic cells (DCs) and macrophages in the muscle, lymph nodes and spleen. Furthermore, DNA/P85 and P85 alone increase the systemic expansion of CD11c+ (DC), and local expansion of CD11c+, CD14+ (macrophages) and CD49b+ (natural killer) cell populations. DNA/P85 (but not P85) also increases maturation of local DC (CD11c+ CD86+, CD11c+ CD80 +, and CD11c+ CD40+. We suggest that DNA/P85 promotes the activation and recruitment of the antigen-presenting cells, which further incorporate, express and carry the transgene to the immune system organs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667955PMC
http://dx.doi.org/10.1016/j.biomaterials.2008.10.064DOI Listing

Publication Analysis

Top Keywords

pluronic p85
8
gene expression
8
antigen-presenting cells
8
lymph nodes
8
nodes spleen
8
dna/p85 p85
8
expansion cd11c+
8
p85
6
cd11c+
5
nonionic block
4

Similar Publications

Nanotechnology is rapidly advancing towards the development of applications for sustainable plant growth and photosynthesis optimization. The nanomaterial/plant interaction has been intensively investigated; however, there is still a gap in knowledge regarding their effect on crop seed development and photosynthetic performance. In the present work, we apply a priming procedure with 10 and 50 mg/L Pluronic-P85-grafted single-walled carbon nanotubes (P85-SWCNT) on garden pea seeds and examine the germination, development, and photosynthetic activity of young seedlings grown on soil substrate.

View Article and Find Full Text PDF

Natural and synthetic polymers are widely explored for improving seed germination and plant resistance to environmental constraints. Here, for the first time, we explore stabilized nanomicelles composed of the biocompatible triblock co-polymer (SPM) as a priming agent for (var. RAN-1) seeds.

View Article and Find Full Text PDF

P-glycoprotein (Pgp) overexpressed in blood brain barrier (BBB) is hypothesized to lower brain drug concentrations and thus inhibit anticonvulsant effects in drug-resistant epilepsy. Pluronic P85 (P85) was proved to enhance the delivery of drugs into the brain by inhibition of Pgp. To determine whether the surfactant P85 [versus Pgp inhibitor tariquidar (TQD)] enhance phenytoin (PHT) into the brain in drug-resistant rats with chronic mesial temporal lobe epilepsy (MTLE) induced by lithium-pilocarpine, in brain of which Pgp were overexpressed, then direct verification of PHT transport via measurement of PHT concentration in brain using microdialysis.

View Article and Find Full Text PDF

The engineering of carbon nanotubes in the last decades resulted in a variety of applications in electronics, electrochemistry, and biomedicine. A number of reports also evidenced their valuable application in agriculture as plant growth regulators and nanocarriers. In this work, we explored the effect of seed priming with single-walled carbon nanotubes grafted with Pluronic P85 polymer (denoted P85-SWCNT) on (var.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!