Resistance to synthetic first-line antimalarial drugs is considered to be a major cause of increased malaria morbidity and mortality. Use of artemisinin-based combination therapies (ACTs) is being encouraged to reduce the malaria mortality in areas of falciparum resistance. Artemisinin is a natural product at times in short supply. With projected rise in demand of artemisinin there is an unmet need for alternate ACTs. Novel compounds that reduce dependence on artemisinin are required. In vitro cultures of Plasmodium falciparum provide a screen system for identifying and evaluating new drug combinations. Interactions of two phytochemicals, artemisinin and licochalcone A, has been studied against synchronized erythrocytic stages of chloroquine-sensitive 3D7 and chloroquine-resistant RKL 303 strains of P. falciparum. These two compounds in combination show synergistic antiplasmodial activity in vitro on these strains. Artemisinin but not licochalcone A interferes with hemozoin formation. Neither of the phytochemicals alone or in combination obstructs sorbitol-induced hemolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actatropica.2008.11.006 | DOI Listing |
Front Pharmacol
February 2022
Honz Pharmaceutical Co., Ltd., Haikou, China.
Xiebai San (XBS) is a traditional Chinese medicine (TCM) prescription that has been widely used to treat pediatric pneumonia since the Song dynasty. To reveal its underlying working mechanism, a network pharmacology approach was used to predict the active ingredients and potential targets of XBS in treating pediatric pneumonia. As a result, 120 active ingredients of XBS and 128 potential targets were screened out.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2021
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
Since the first reported case caused by the novel coronavirus SARS-CoV-2 infection in Wuhan, COVID-19 has caused serious deaths and an ongoing global pandemic, and it is still raging in more than 200 countries and regions around the world and many new variants have appeared in the process of continuous transmission. In the early stage of the epidemic prevention and control and clinical treatment, traditional Chinese medicine played a huge role in China. Here, we screened out six monomer compounds, including artemether, artesunate, arteannuin B, echinatin, licochalcone B and andrographolide, with excellent anti-SARS-CoV-2 and anti-GX_P2V activity from Anti-COVID-19 Traditional Chinese Medicine Compound Library containing 389 monomer compounds extracted from traditional Chinese medicine prescriptions "three formulas and three drugs".
View Article and Find Full Text PDFEur J Med Chem
May 2014
Malaria Research Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India. Electronic address:
The in vitro blood stage antiplasmodial activity of a series of allylated chalcones based on the licochalcone A as lead molecule was investigated against chloroquine (CQ) sensitive Pf3D7 and CQ resistant PfINDO strains of Plasmodium falciparum using SYBR Green I assay. Of the forty two chalcones tested, eight showed IC50 ≤ 5 μM. Structure-activity relationship (SAR) studies revealed 9 {1-(4-Chlorophenyl)-3-[3-methoxy-4-(prop-2-en-1-yloxy)phenyl]-prop-2-en-1-one} as the most potent (IC50: 2.
View Article and Find Full Text PDFActa Trop
March 2009
Department of Zoology, North Campus, University of Delhi, Delhi, India.
Resistance to synthetic first-line antimalarial drugs is considered to be a major cause of increased malaria morbidity and mortality. Use of artemisinin-based combination therapies (ACTs) is being encouraged to reduce the malaria mortality in areas of falciparum resistance. Artemisinin is a natural product at times in short supply.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!