Background: The transient receptor potential (TRP) superfamily of ion channels are a large and diverse group that have received increased attention in recent years. The sub-family of thermo-TRPs which are regulated by temperature, among other physical and chemical stimuli, are of particular interest for the development of potential pain therapeutics.
Objective/methods: We review the advances in the field in recent years, focusing on a rationale for pain therapy and potential challenges associated with these targets.
Results/conclusions: Vanilloid-type TRP 1 (TRPV1) is the most well studied and advanced member of the family, with selective agonists and antagonists already in clinical use or development, respectively. Among other thermo-TRPs (including TRPV2 - 4, Ankyrin type TRP 1 (TRPA1) and melastatin type TRP 8 (TRPM8)), TRPA1 and TRPM8 are emerging as promising novel pain targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/14728220802616620 | DOI Listing |
J Microbiol Biotechnol
January 2025
Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea.
is a lactic acid bacteria found in fermented products. In our previous study, was isolated from flowers, and its acid tolerance and antibacterial properties were thoroughly investigated. This study focuses on the inhibition of melanin synthesis and inflammation of exosomes derived from .
View Article and Find Full Text PDFReprod Sci
January 2025
Department of Physiology, College of Graduate Studies, Midwestern University, Downers Grove, IL, 60515, USA.
The experience of pregnancy affects uterine function well beyond delivery. We previously demonstrated that the response to oxytocin is more robust in the uteri of proven breeder rats. This study investigates the contribution of T-type calcium channels (TTCCs) and L-type calcium channels (LTCCs) to the distinct response of virgin (V) and proven breeder (PB) rat uteri to oxytocin.
View Article and Find Full Text PDFInfect Immun
January 2025
Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.
is an obligate intracellular bacterial pathogen that develops within a membrane-bound vacuole called an inclusion. Throughout its developmental cycle, modifies the inclusion membrane (IM) with type III secreted (T3S) membrane proteins, known as inclusion membrane proteins (Incs). Via the IM, manipulates the host cell to acquire lipids and nutrients necessary for its growth.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210.
The homo-dodecameric ring-shaped RNA binding attenuation protein (TRAP) from binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity.
View Article and Find Full Text PDFEur J Orthod
December 2024
Division of Paediatric Dentistry & Orthodontics, Faculty of Dentistry, the University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China.
Background: Periodontal ligament cells (PDLCs) possess mechanotransduction capability, vital in orthodontic tooth movement (OTM) and maintaining periodontal homeostasis. The study aims to elucidate the expression profiles of mechanosensitive ion channel (MIC) families in PDLCs and how the inflammatory mediator alters their expression and function, advancing the understanding of the biological process of OTM.
Methods And Methods: Human PDLCs were cultured and exposed to TNF-α.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!