The mechanism by which many creatures such as geckos can run at ease on a vertical wall and yet remain strongly adhered has been linked to hierarchically patterned microstructures: flexible pads, hairs, and subsurface fluidic vessels at their feet. Despite many advances, how these features of different length scales and the associated physical phenomena couple to engender this "smart" adhesive is yet to be understood and mimicked. In this context, we have designed elastomeric films of poly(dimethylsiloxane) embedded with stacks of planar microchannels, curved and straight, and channels with microscopically patterned walls. We have altered also chemically the adhesive surface including that of the microchannel walls by creating dangling chains. During indentation experiments, deformation and self-adhesion of these structures enhance the effective area of adhesion with a consequent increase in adhesion hysteresis over orders of magnitude. In addition, suitable orientation of these buried channels allows the generation of load dependent hysteresis and its spatial modulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la803092d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!