Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The energetics of the reaction of HOCO with HO(2) have been studied using the quadratic configuration interaction with single and double excitations (QCISD(T)) method and a large basis set on the singlet and triplet potential energy surfaces of the system. The results show that the ground-state O(2)+HOC(O)H products can be produced by a direct hydrogen abstraction via a transition state with a small barrier (1.66 kcal/mol) on the lowest triplet surface. A similar hydrogen abstraction can occur on the singlet electronic surface, but it leads to the singlet O(2)(a(1)Delta) and HOC(O)H. On the singlet surface, a new stable intermediate, HOC(O)OOH, hydroperoxyformic acid, has been found. This intermediate is formed by the direct addition of the terminal oxygen atom in HO(2) onto the carbon atom in HOCO in a barrierless reaction. The HOC(O)OOH intermediate may dissociate into either the CO(2)+H(2)O(2) or CO(3)+H(2)O products through elimination reactions with four-center transition states, or into HOC(O)O+OH through an O-O bond cleavage. The heat of formation of HOC(O)OOH is predicted to be -118.9+/-1.0 kcal/mol. In addition, the dynamics of the HO(2)+HOCO reaction have been investigated using a scaling-all correlation couple cluster method with single and double excitation terms (CCSD) on the singlet potential energy surface. Reaction mechanisms have been studied in detail. It was found that the direct and addition reaction mechanisms coexist. For the addition mechanism, the lifetime of the HOC(O)OOH intermediate is predicted to be 880+/-27 fs. At room temperature, the calculated thermal rate coefficient is (6.52+/-0.44)x10(-11) cm(3) molecule(-1) s(-1) with the product branching fractions: 0.77 (CO(2)+H(2)O(2)), 0.15 (HOC(O)O+OH), 0.056 (CO(3)+H(2)O), 0.019 (O(2)(a(1)Delta)+HOC(O)H), and 0.01 (O(2)(X (3)Sigma)+HOC(O)H).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3028052 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!