Surface wave conversion analysis on a lengthwise soldered circular cylindrical shell.

J Acoust Soc Am

Laboratoire d'Acoustique Ultrasonore et d'Electronique UMR CNRS 6068, Universite du Havre, place Robert Schuman, 76610 Le Havre, France.

Published: October 2008

This paper deals with wave conversion phenomena through a study of the acoustic scattering from a stiffened cylindrical shell at normal incidence. The analysis presented follows the experimental study which explored the acoustic wave propagation and scattering processes in the case of air-filled submerged cylindrical shells having internal axial solder [J. Chiumia, N. Touraine, D. Decultot, G. Maze, A. Klauson, and J. Metsaveer, J. Acoust. Soc. Am. 105, 183-193 (1999)]. The significant observed phenomena were generation, reflection, and conversion of circumnavigating waves at the solder. The present work confirms the presence of the three phenomena through a theoretical approach based on the elasticity theory. In particular, resonances with new feature whose frequencies are very close to those of the S(0) wave are highlighted here. The origin of this new resonance feature is identified and can be associated to wave type conversions between A(0) and S(0) Lamb waves, occurring when these propagating waves encounter the solder. The air-filled stainless steel studied tube submerged in water has an internal lengthwise solder, which is, in theoretical computations, considered as an internal axial mass layer. The reduced frequency range (k(1)a) of the study is between 25 and 90, (k(1): wave number in water; a: external radius of the shell).

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.2973233DOI Listing

Publication Analysis

Top Keywords

wave conversion
8
cylindrical shell
8
internal axial
8
wave
5
surface wave
4
conversion analysis
4
analysis lengthwise
4
lengthwise soldered
4
soldered circular
4
circular cylindrical
4

Similar Publications

Strong coupling FeVO nanoparticles/3D N-doped interconnected porous carbon derived from MOFs by confined adsorption-assembly-pyrolysis for greatly boosting oxygen reduction.

J Colloid Interface Sci

January 2025

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China. Electronic address:

Low-cost and effective electrocatalysts are critical for energy storage and conversion. Herein, iron(III) and vanadium(III) acetylacetonates were first adsorbed and confined in porous zeolitic imidazolate framework-8 (ZIF-8), which further cross-linked together by the methanol-induced-assembly. Following the pyrolysis, the FeVO nanoparticles were efficiently encapsulated within three-dimensional (3D) N-doped interconnected porous carbon, termed FeVO/NIPC.

View Article and Find Full Text PDF

2D materials feature large specific surface areas and abundant active sites, showing great potential in energy storage and conversion. However, the dense, stacked structure severely restricts its practical application. Inspired by the structure of bamboo in nature, hollow interior and porous exterior wall, hollow MXene aerogel fiber (HA-TiCT fiber) is proposed.

View Article and Find Full Text PDF

Optimizing the Coordination Energy of Co-N Sites by Co Nanoparticles Integrated with Fe-NCNTs for Boosting PEMFC and Zn-Air Battery Performance.

Small

January 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.

Enhancing the catalytic performance and durability of M-N─C catalyst is crucial for the efficient operation of proton exchange membrane fuel cells (PEMFCs) and Zn-Air batteries (ZABs). Herein, an approach is developed for the in situ fabrication of a MOFs-derived porous carbon material, co-loaded with Co nanoparticles (NPs) and Co-N sites and integrated onto Fe-doped carbon nanotubes (CNTs), named Co-NC/Fe-NCNTs. Incorporating polymer-wrapped CNTs improves MOFs dispersion annealing at high temperature, which amplifies the three-phase boundary (TPB) by generating much more mesopores and exposing additional active sites within the catalysts layer.

View Article and Find Full Text PDF

Radical covalent organic frameworks (RCOFs) have demonstrated significant potential in redox catalysis and energy conversion applications. However, the synthesis of stable RCOFs with well-defined neutral carbon radical centers is challenging due to the inherent radical instability, limited synthetic methods and characterization difficulties. Building upon the understanding of stable carbon radicals and structural modulations for preparing crystalline COFs, herein we report the synthesis of a crystalline carbon-centered RCOF through a facile post-oxidation process.

View Article and Find Full Text PDF

We introduce a novel material for integrated photonics and investigate aluminum gallium nitride (AlGaN) on aluminum nitride (AlN) templates as a platform for developing reconfigurable and on-chip nonlinear optical devices. AlGaN combines compatibility with standard photonic fabrication technologies and high electro-optic modulation capabilities with low loss over a broad spectral range, from UVC to long-wave infrared, making it a viable material for complex photonic applications. In this work, we design and grow AlGaN/AlN heterostructures and integrate several photonic components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!