Bubble growth by rectified diffusion at high gas supersaturation levels.

J Acoust Soc Am

Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78713-8029, USA.

Published: October 2008

For high gas supersaturation levels in liquids, on the order of 300% as predicted in capillaries of marine mammals following a series of dives [D. S. Houser, R. Howard, and S. Ridgway, J. Theor. Biol. 213, 183-195 (2001)], standard mathematical models of both static and rectified diffusion are found to underestimate the rate of bubble growth by 10%-20%. The discrepancy is demonstrated by comparing predictions based on existing mathematical models with direct numerical solutions of the differential equations for gas diffusion in the liquid and thermal conditions in the bubble. Underestimation of bubble growth by existing mathematical models is due to the underlying assumption that the gas concentration in the liquid is given by its value for a bubble of constant equilibrium radius. This assumption is violated when high supersaturation causes the bubble to grow too fast in relation to the time scale associated with diffusion. Rapid bubble growth results in an increased gas concentration gradient at the bubble wall and therefore a growth rate in excess of predictions based on constant equilibrium bubble radius.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.2973235DOI Listing

Publication Analysis

Top Keywords

bubble growth
16
mathematical models
12
bubble
9
rectified diffusion
8
high gas
8
gas supersaturation
8
supersaturation levels
8
predictions based
8
existing mathematical
8
gas concentration
8

Similar Publications

Automated electrochemical oxygen sensing using a 3D-printed microfluidic lab-on-a-chip system.

Lab Chip

January 2025

Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel.

Dissolved oxygen is crucial for metabolism, growth, and other complex physiological and pathological processes; however, standard physiological models (such as organ-on-chip systems) often use ambient oxygen levels, which do not reflect the lower levels that are typically found . Additionally, the local generation of reactive oxygen species (ROS; a key factor in physiological systems) is often overlooked in biology-mimicking models. Here, we present a microfluidic system that integrates electrochemical dissolved oxygen sensors with lab-on-a-chip technology to monitor the physiological oxygen concentrations and generate hydrogen peroxide (HO; a specific ROS).

View Article and Find Full Text PDF
Article Synopsis
  • Polymers are being studied as eco-friendly alternatives to fluorinated foam extinguishing agents, focusing on how they affect the performance of non-fluorinated foams.
  • The research examines the impact of xanthan gum, sodium carboxymethyl cellulose, and gelatin on various properties such as viscosity, conductivity, and foam stability of a specific siloxane-based mixture.
  • Results indicate that while the polymers increased viscosity and conductivity, they also decreased foamability, with gelatin enhancing surface activity and contributing to prolonged drainage times and film stability.
View Article and Find Full Text PDF

Effect of ultrafine CO2 bubbles on Euglena gracilis Z growth with CO2 gas bubble size and chlorophyll content.

Biosci Biotechnol Biochem

December 2024

Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Central Ward, Hamamatsu, Shizuoka, Japan.

Microalgae have been explored as a viable alternative food source. Among them, Euglena gracilis stands out as a promising single-cell algae. However, the challenge lies in developing more efficient and cost-effective methods for industrial mass production of Euglena gracilis under controlled culture conditions.

View Article and Find Full Text PDF

Toward Green Liquid Nitrogen Fertilizer Synthesis: Plasma-Driven Nitrogen Oxidation and Partial Electrocatalytic Reduction.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Liquid fertilizers, particularly when integrated with precision irrigation systems, offer a more efficient and sustainable alternative to traditional solid nitrogen fertilizers. The industrial production of ammonium nitrate (NHNO) is environmentally detrimental due to its reliance on fossil fuels. This study introduces an innovative air-to-NOx-to-NHNO pathway for synthesizing liquid nitrogen fertilizer.

View Article and Find Full Text PDF

Silicone gel, used in the packaging of high-voltage, high-power semiconductor devices, generates bubbles during the packaging process, which accelerates the degradation of its insulation properties. This paper establishes a testing platform for electrical treeing in silicone gel under pulsed electric fields, investigating the effect of pulse voltage amplitude on bubble development and studying the initiation and growth of electrical treeing in a silicone gel with different pulse edge times. The relationship between bubbles and electrical treeing in silicone gel materials is discussed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!